版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省滁州市来安县第二中学2024届数学高一上期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图象过点,则的定义域为()A.R B.C. D.2.已知,,,则、、的大小关系为()A. B.C. D.3.下列结论正确的是()A.不相等的角终边一定不相同B.,,则C.函数的定义域是D.对任意的,,都有4.已知函数,若的最小正周期为,则的一条对称轴是(
)A. B.C. D.5.已知cosα=,cos(α+β)=-,且α,β∈,则cos(α-β)的值等于A.- B.C.- D.6.为了得到的图象,可以将的图象()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位7.不等式x2≥2x的解集是()A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}8.已知奇函数fx在R上是增函数,若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b9.命题,则命题p的否定是()A. B.C. D.10.设,则a,b,c的大小关系是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,是夹角为的两个单位向量,则,的夹角为________.12.函数的定义域是______________.13.已知,则__________.14.有一批材料可以建成360m长的图墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样材料隔成三个面积相等的小矩形如图所示,则围成场地的最大面积为______围墙厚度不计15.若函数在区间上是单调递增函数,则实数的取值范围是_______.16.函数(且)的图象必经过点___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,(1)当时,求,;(2)若是的充分不必要条件,求实数的取值范围18.(1)已知,求的值;(2)已知,,求的值.19.已知M(1,﹣1),N(2,2),P(3,0).(1)求点Q的坐标,满足PQ⊥MN,PN∥MQ.(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.20.函数是定义在上的奇函数,且(1)确定的解析式(2)判断在上的单调性,并利用函数单调性的定义证明;(3)解关于的不等式21.在△中,的对边分别是,已知,.(1)若△的面积等于,求;(2)若,求△的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】设,点代入即可求得幂函数解析式,进而可求得定义域.【题目详解】设,因为的图象过点,所以,解得,则,故的定义域为故选:C2、C【解题分析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【题目详解】因为,,,因此,.故选:C.3、B【解题分析】根据对数函数与三角函数的性质依次讨论各选项即可得答案.【题目详解】解:对于A选项,例如角的终边相同,但不相等,故错误;对于B选项,,,则,故正确;对于C选项,由题,解得,即定义域是,故错误;对于D选项,对数不存在该运算法则,故错误;故选:B4、C【解题分析】由最小正周期公式有:,函数的解析式为:,函数的对称轴满足:,令可得的一条对称轴是.本题选择C选项.5、D【解题分析】∵α∈,∴2α∈(0,π).∵cosα=,∴cos2α=2cos2α-1=-,∴sin2α=,而α,β∈,∴α+β∈(0,π),∴sin(α+β)=,∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)==.6、A【解题分析】根据左加右减原则,只需将函数向左平移个单位可得到.【题目详解】,即向左平移个单位可得到.故选:A【题目点拨】本题考查正弦型函数的图像与性质,三角函数诱导公式,属于基础题.7、D【解题分析】由x2≥2x解得:x(x-2)≥0,所以x≤0或x≥2.选D.8、C【解题分析】由题意:a=f-且:log2据此:log2结合函数的单调性有:flog即a>b>c,c<b<a.本题选择C选项.【考点】指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.9、A【解题分析】全称命题的否定是特称命题,并将结论加以否定.【题目详解】因为命题,所以命题p的否定是,故选:A.10、C【解题分析】比较a、b、c与0和1的大小即可判断它们之间的大小.【题目详解】,,,故故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由题得,,再利用向量的夹角公式求解即得解.【题目详解】由题得,所以.所以,的夹角为.故答案为:【题目点拨】本题主要考查平面向量的模和数量积的计算,考查向量的夹角的计算,意在考查学生对这些知识的理解掌握水平.12、【解题分析】根据表达式有意义列条件,再求解条件得定义域.【题目详解】由题知,,整理得解得.所以函数定义域是.故答案为:.13、3【解题分析】由同角三角函数商数关系及已知等式可得,应用诱导公式有,即可求值.【题目详解】由题设,,可得,∴.故答案为:314、8100【解题分析】设小矩形的高为,把面积用表示出来,再根据二次函数的性质求得最大值【题目详解】解:设每个小矩形的高为am,则长为,记面积为则当时,所围矩形面积最大值为故答案8100【题目点拨】本题考查函数的应用,解题关键是寻找一个变量,把面积表示为此变量的函数,再根据函数的知识求得最值.本题属于基础题15、【解题分析】先求出抛物线的对称轴方程,然后由题意可得,解不等式可求出的取值范围【题目详解】解:函数的对称轴方程为,因为函数在区间上是单调递增函数,所以,解得,故答案为:16、【解题分析】令得,把代入函数的解析式得,即得解.【题目详解】解:因为函数,其中,,令得,把代入函数的解析式得,所以函数(且)的图像必经过点的坐标为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解题分析】(1)当时,求出集合,然后再求交集合并集.(2)若是的充分不必要条件,则有MN,可得出答案.【题目详解】(1)因为,所以,所以有,(2)若是的充分不必要条件,则有MN,所以18、(1);(2)【解题分析】(1)根据题意,构造齐次式求解即可;(2)根据,并结合求解即可.【题目详解】解:(1)因为所以,(2)因为,所以,因为,所以,所以所以所以19、(1)(2)【解题分析】(1)设Q(x,y),根据PQ⊥MN得出,然后由PN∥MQ得出,解方程组即可求出Q的坐标;(2)设Q(x,0)由∠NQP=∠NPQ得出kNQ=﹣kNP,解方程求出Q的坐标,然后即可得出结果.【小问1详解】设Q(x,y),由已知得kMN=3,又PQ⊥MN,可得kMN×kPQ=﹣1即(x≠3)①由已知得kPN=﹣2,又PN∥MQ,可得kPN=kMQ,即(x≠1)②联立①②求解得x=0,y=1,∴Q(0,1);【小问2详解】设Q(x,0),∵∠NQP=∠NPQ,∴kNQ=﹣kNP,又∵kNQ,kNP=﹣2,∴2解得x=1,∴Q(1,0),又∵M(1,﹣1),∴MQ⊥x轴,故直线MQ的倾斜角为90°.20、(1)(2)增函数,证明见解析(3)【解题分析】(1)根据奇偶性的定义与性质求解(2)由函数的单调性的定义证明(3)由函数奇偶性和单调性,转化不等式后再求解【小问1详解】根据题意,函数是定义在上的奇函数,则,解可得;又由,则有,解可得;则【小问2详解】由(1)的结论,,在区间上为增函数;证明:设,则又由,则,,,,则,即则函数在上为增函数.【小问3详解】由(1)(2)知为奇函数且在上为增函数.,解可得:,即不等式的解集为.21、(1);(2).【解题分析】(1)先根据条件可得到,由三角形的面积可得,与联立得到方程组后可解得.(2)由可得,分和两种情况分别求解,最后可得的面积为试题解析:(1)∵,,∴,∴,又,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外墙保温技术标投标方案文件
- 清洁服务业劳务派遣合同要素
- 2024年企业信息安全评估合同
- 2024年加工承揽合同终止协议
- 养老院集体游戏与互动方案
- 2024年城市拆除工程爆破承包合同
- 小学生心理辅导师培训方案
- 2024年大数据分析平台建设与运营协议
- 2024年个体工商户与员工劳动合同指南
- 种植业水肥一体化规范实施方案
- 医院管理医院应急调配机制
- 西游记 品味经典名著导读PPT
- 金坛区苏科版四年级心理健康教育第1课《我的兴趣爱好》课件(定稿)
- 心肌缺血和心肌梗死的心电图表现讲义课件
- 小学生性教育调查问卷
- 学历案的编写课件
- 旅游行政管理第二章旅游行政管理体制课件
- 卫生院关于召开基本公共卫生服务项目培训会的通知
- 有机化学ppt课件(完整版)
- 管理咨询公司关键绩效考核指标
- 最新人教版三年级上册数学期中考试试题以及答案
评论
0/150
提交评论