2024届山东省青岛十七中数学高一上期末学业水平测试试题含解析_第1页
2024届山东省青岛十七中数学高一上期末学业水平测试试题含解析_第2页
2024届山东省青岛十七中数学高一上期末学业水平测试试题含解析_第3页
2024届山东省青岛十七中数学高一上期末学业水平测试试题含解析_第4页
2024届山东省青岛十七中数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省青岛十七中数学高一上期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若集合,则下列选项正确的是()A. B.C. D.2.,则A.1 B.2C.26 D.103.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.1004.如果函数是定义在上的奇函数,当时,函数的图象如图所示,那么不等式的解集是A. B.C. D.5.函数是奇函数,则的值为A.0 B.1C.-1 D.不存在6.专家对某地区新冠肺炎爆发趋势进行研究发现,从确诊第一名患者开始累计时间(单位:天)与病情爆发系数之间,满足函数模型:,当时,标志着疫情将要大面积爆发,则此时约为()(参考数据:)A. B.C. D.7.设向量,,,则A. B.C. D.8.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积可能等于A. B.C. D.29.若角满足,,则角所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限10.函数的图象大致()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.扇形半径为,圆心角为60°,则扇形的弧长是____________12.在空间直角坐标系中,点关于平面的对称点是B,点和点的中点是E,则___________.13.有关数据显示,中国快递行业产生的包装垃圾在2015年约为400万吨,2016年的年增长率为50%,有专家预测,如果不采取措施,未来包装垃圾还将以此增长率增长,从__________年开始,快递业产生的包装垃圾超过4000万吨.(参考数据:,)14.已知点为圆上的动点,则的最小值为__________15.计算:__________,__________16.函数的定义域是___________,若在定义域上是单调递增函数,则实数的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.18.如图所示,在三棱柱ABC­A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.19.已知函数;(1)求的定义域与最小正周期;(2)求在区间上的单调性与最值.20.已知函数的部分图象如下图所示.(1)求函数解析式,并写出函数的单调递增区间;(2)将函数图象上所有点的横坐标缩短到原来的(纵坐标不变),再将所得的函数图象上所有点向左平移个单位长度,得到函数的图象.若函数的图象关于直线对称,求函数在区间上的值域.21.化简求值:(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用元素与集合,集合与集合的关系判断.【题目详解】因为集合是奇数集,所以,,,A,故选:C2、B【解题分析】根据题意,由函数的解析式可得,进而计算可得答案.【题目详解】根据题意,,则;故选B.【题目点拨】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.3、D【解题分析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.4、B【解题分析】图1图2如图1为f(x)在(-3,3)的图象,图2为y=cosx图象,要求得的解集,只需转化为在寻找满足如下两个关系的区间即可:,结合图象易知当时,,当时,,当时,,故选B.考点:奇函数的性质,余弦函数的图象,数形结合思想.5、C【解题分析】由题意得,函数是奇函数,则,即,解得,故选C.考点:函数的奇偶性的应用.6、B【解题分析】根据列式求解即可得答案.【题目详解】解:因为,,所以,即,所以,由于,故,所以,所以,解得.故选:B.【题目点拨】本题解题的关键在于根据题意得,再结合已知得,进而根据解方程即可得答案,是基础题.7、A【解题分析】,由此可推出【题目详解】解:∵,,,∴,,,,故选:A【题目点拨】本题主要考查平面向量垂直的坐标表示,考查平面向量的模,属于基础题8、C【解题分析】如果主视图是从垂直于正方体的面看过去,则其面积为1;如果斜对着正方体的某表面看,其面积就变大,最大时,(是正对着正方体某竖着的棱看),面积为以上表面的对角线为长,以棱长为宽的长方形,其面积为,可得主视图面积最小是1,最大是,故选C.点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.9、C【解题分析】根据,,分别确定的范围,综合即得解.【题目详解】解:由知,是一、三象限角,由知,是三、四象限角或终边在y轴负半轴上,故是第三象限角故选:C10、A【解题分析】根据对数函数的图象直接得出.【题目详解】因为,根据对数函数的图象可得A正确.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据弧长公式直接计算即可.【题目详解】解:扇形半径为,圆心角为60°,所以,圆心角对应弧度为.所以扇形的弧长为.故答案为:12、【解题分析】先利用对称性求得点B坐标,再利用中点坐标公式求得点E坐标,然后利用两点间距离公式求解.【题目详解】因为点关于平面的对称点是,点和点的中点是,所以,故答案为:13、2021【解题分析】设快递行业产生的包装垃圾为y万吨,n表示从2015年开始增加的年份的数量,由题意可得y=400×(1+50%)n=400×(两边取对数可得n(lg3-lg2)=1,∴n(0.4771-0.3010)=1,解得0.176n=1,解得n≈6,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为202114、-4【解题分析】点为圆上的动点,所以.由,所以当时有最小值-4.故答案为-4.15、①.0②.-2【解题分析】答案:0,16、①.##②.【解题分析】根据对数函数的定义域求出x的取值范围即可;结合对数复合型函数的单调性与一次函数的单调性即可得出结果.【题目详解】由题意知,,得,即函数的定义域为;又函数在定义域上单调增函数,而函数在上单调递减,所以函数为减函数,故.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【题目详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【题目点拨】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.18、(1)证明见解析;(2)证明见解析.【解题分析】(1)证明,再由,由平行公理证明,证得四点共面;(2)证明,证得面,再证得,证得面,从而证得平面EFA1∥平面BCHG.【题目详解】(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1GEB且,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【题目点拨】本题考查了四点共面的证明,面面平行的判定,考查对基本定理的掌握与应用,空间想象能力,要注意线线平行、线面平行、面面平行之间的相互转化,属于中档题.19、(1)定义域,;(2)单调递增:,单调递减:,最大值为1,最小值为;【解题分析】(1)简化原函数,结合定义域求最小正周期;(2)在给定区间上结合正弦曲线,求单调性与最值.试题解析:;(1)的定义域:,最小正周期;(2),即最大值为1,最小值为,单调递增:,单调递减:,20、(1),递增区间为;(2).【解题分析】(1)由三角函数的图象,求得函数的解析式,结合三角函数的性质,即可求解.(2)由三角函数的图象变换,求得,根据的图象关于直线对称,求得的值,得到,结合三角函数的性质,即可求解.【题目详解】(1)由图象可知,,所以,所以,由图可求出最低点的坐标为,所以,所以,所以,因为,所以,所以,由,可得.所以函数的单调递增区间为.(2)由题意知,函数,因为的图象关于直线对称,所以,即,因为,所以,所以.当时,,可得,所以,即函数的值域为.【题目点拨】解答三角函数的图象与性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论