新疆沙雅县第二中学2024届高一数学第一学期期末复习检测模拟试题含解析_第1页
新疆沙雅县第二中学2024届高一数学第一学期期末复习检测模拟试题含解析_第2页
新疆沙雅县第二中学2024届高一数学第一学期期末复习检测模拟试题含解析_第3页
新疆沙雅县第二中学2024届高一数学第一学期期末复习检测模拟试题含解析_第4页
新疆沙雅县第二中学2024届高一数学第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆沙雅县第二中学2024届高一数学第一学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.满足的角的集合为()A. B.C. D.2.已知角的终边经过点,则的值为()A.11 B.10C.12 D.133.正割及余割这两个概念是由伊朗数学家阿布尔威发首先引入的.定义正割,余割.已知为正实数,且对任意的实数均成立,则的最小值为()A. B.C. D.4.已知函数,函数有四个不同的的零点,,,,且,则()A.a的取值范围是(0,) B.的取值范围是(0,1)C. D.5.不等式的解集为()A. B.C. D.6.函数(为自然对数的底)的零点所在的区间为A. B.C. D.7.若偶函数在定义域内满足,且当时,;则的零点的个数为()A.1 B.2C.9 D.188.下列命题中正确的是()A.若两个向量相等,则它们的起点和终点分别重合B.模相等的两个平行向量是相等向量C.若和都是单位向量,则=D.两个相等向量的模相等9.已知扇形的周长为8,扇形圆心角的弧度数是2,则扇形的面积为()A.2 B.4C.6 D.810.地震以里氏震级来度量地震的强度,若设为地震时所散发出来的相对能量,则里氏震级可定义为.在2021年3月下旬,地区发生里氏级地震,地区发生里氏7.3级地震,则地区地震所散发出来的相对能量是地区地震所散发出来的相对能量的()倍.A.7 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在上的函数,满足不等式,则的取值范围是______12.角的终边经过点,且,则________.13.写出一个满足,且的函数的解析式__________14.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为轴,建立如图平面直角坐标系,一个水斗从点出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时秒.经过秒后,水斗旋转到点,设点的坐标为,其纵坐标满足,当秒时,___________.15.符号表示不超过的最大整数,如,定义函数,则下列命题中正确是________.①函数最大值为;②函数的最小值为;③函数有无数个零点;④函数是增函数;16.函数的值域是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知扇形AOB的圆心角α为,半径长R为6,求:(1)弧AB的长;(2)扇形的面积18.已知函数(1)求函数图象的相邻两条对称轴的距离;(2)求函数在区间上的最大值与最小值,以及此时的取值19.已知函数.(1)判断在上的单调性,并证明你的结论;(2)是否存在,使得是奇函数?若存在,求出所有的值;若不存在,请说明理由.20.在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,(Ⅰ)求证:A1C1⊥BC1;(Ⅱ)求证:AC1∥平面CDB121.已知集合,.(1)若,求;(2)若,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】利用正弦函数的图像性质即可求解.【题目详解】.故选:D.2、B【解题分析】由角的终边经过点,根据三角函数定义,求出,带入即可求解.【题目详解】∵角的终边经过点,∴,∴.故选:B【题目点拨】利用定义法求三角函数值要注意:(1)三角函数值的大小与点P(x,y)在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2)当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论3、D【解题分析】由参变量分离法可得出,利用基本不等式可求得取值范围,即可得解.【题目详解】由已知可得,可得,因为,则,因为,当且仅当时,等号成立,故.故选:D.4、D【解题分析】将问题转化为与有四个不同的交点,应用数形结合思想判断各交点横坐标的范围及数量关系,即可判断各选项的正误.【题目详解】有四个不同的零点、、、,即有四个不同的解的图象如下图示,由图知:,所以,即的取值范围是(0,+∞)由二次函数的对称性得:,因为,即,故故选:D【题目点拨】关键点点睛:将零点问题转化为函数交点问题,应用数形结合判断交点横坐标的范围或数量关系.第II卷5、D【解题分析】化简不等式并求解即可.【题目详解】将不等式变形为,解此不等式得或.因此,不等式解集为故选:D【题目点拨】本题考查一元二次不等式解法,考查学生计算能力,属于基础题.6、B【解题分析】分析:先判断函数的单调性,然后结合选项,利用零点的存在定理,即可求解.详解:由题意,函数为单调递减函数,又因为,由函数的零点判断可知,函数的零点在区间,故选B.点睛:本题主要考查了函数的零点的判定定理及应用,其中熟记函数的零点的存在定理是解答本题的关键,着重考查了推理与计算能力,属于基础题.7、D【解题分析】由题,的零点的个数即的交点个数,再根据的对称性和周期性画出图象,数形结合分析即可【题目详解】由可知偶函数周期为2,故先画出时,的函数图象,再分别利用偶函数关于轴对称、周期为2画出的函数图象,则的零点个数即为的零点个数,即的交点个数,易得在上有个交点,故在定义域内有18个交点.故选:D8、D【解题分析】考查所给的四个选项:向量是可以平移的,则若两个向量相等,则它们的起点和终点不一定分别重合,A说法错误;向量相等向量模相等,且方向相同,B说法错误;若和都是单位向量,但是两向量方向不一致,则不满足,C说法错误;两个相等向量的模一定相等,D说法正确.本题选择D选项.9、B【解题分析】由给定条件求出扇形半径和弧长,再由扇形面积公式求出面积得解.【题目详解】设扇形所在圆半径r,则扇形弧长,而,由此得,所以扇形的面积.故选:B10、C【解题分析】把两个震级代入后,两式作差即可解决此题【题目详解】设里氏3.1级地震所散发出来的能量为,里氏7.3级地震所散发出来的能量为,则①,②②①得:,解得:故选:二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】观察函数的解析式,推断函数的性质,借助函数性质解不等式【题目详解】令,则,得,即函数的图像关于中心对称,且单调递增,不等式可化为,即,得,解集为【题目点拨】利用函数解决不等式问题,关键是根据不等式构造适当的函数,通过研究函数的单调性等性质解决问题12、【解题分析】由题意利用任意角的三角函数的定义直接计算【题目详解】角的终边经过点,且,解得.故答案为:13、(答案不唯一)【解题分析】根据题意可知函数关于对称,写出一个关于对称函数,再检验满足即可.【题目详解】由,可知函数关于对称,所以,又,满足.所以函数的解析式为(答案不唯一).故答案为:(答案不唯一).14、【解题分析】求出关于的函数解析式,将代入函数解析式,求出的值,可得出点的坐标,进而可求得的值.【题目详解】由题意可知,,函数的最小正周期为,则,所以,,点对应,,则,可得,,,故,当时,,因为,故点不与点重合,此时点,则.故答案为:.15、②③【解题分析】利用函数中的定义结合函数的最值、周期以及单调性即可求解.【题目详解】函数,函数的最大值为小于,故①不正确;函数的最小值为,故②正确;函数每隔一个单位重复一次,所以函数有无数个零点,故③正确;由函数图像,结合函数单调性定义可知,函数在定义域内不单调,故④不正确;故答案为:②③【题目点拨】本题考查的是取整函数问题,在解答时要充分理解的含义,注意对新函数的最值、单调性以及周期性加以分析,属于基础题.16、【解题分析】利用换元法,将变为,然后利用三角恒等变换,求三角函数的值域,可得答案.【题目详解】由,得,可设,故,不妨取为锐角,而,时取最大值),,故函数的值域为,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由弧长公式计算弧长;(2)由扇形面积公式计算面积【小问1详解】弧AB的长为;【小问2详解】面积为18、(1);(2)时,取得最大值为3;当时,取得最小值为【解题分析】利用倍角公式降幂,再由辅助角公式可把函数化简为(1)求出函数的半周期得答案;(2)由的范围求出的范围,利用正弦函数的性质可求原函数的最值及使原函数取得最值时的值详解】.(1)函数图象的相邻两条对称轴的距离为;(2),∴当,即时,取得最大值为3;当,即时,取得最小值为【题目点拨】本题考查型函数的图象与性质、倍角公式与两角和的正弦的应用,是基础题19、(1)减函数,证明见解析;(2),理由见解析【解题分析】(1)由单调性定义判断;(2)根据奇函数的性质由求得,然后再由奇函数定义验证【题目详解】(1)是上的减函数设,则,所以,,即,,所以,所以是上的减函数(2)若是奇函数,则,,时,,所以,所以为奇函数所以时,函数为奇函数20、(1)见解析(2)见解析【解题分析】(1)要证线线垂直,转证平面,(2)要证AC1∥平面CDB1,转证//即可.试题解析:证明(法一:故有,A.法二:;由直三棱柱;;平面;平面,平面,平面,(连接相交于点O,连OD,易知//,平面,平面,故//平面.点睛:垂直、平行关系证明中应用转化与化归思想的常见

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论