![学易试题君之单元测试君2024届高一上数学期末联考试题含解析_第1页](http://file4.renrendoc.com/view/15fac7e7a6c399a95a6c4b66fd9224d7/15fac7e7a6c399a95a6c4b66fd9224d71.gif)
![学易试题君之单元测试君2024届高一上数学期末联考试题含解析_第2页](http://file4.renrendoc.com/view/15fac7e7a6c399a95a6c4b66fd9224d7/15fac7e7a6c399a95a6c4b66fd9224d72.gif)
![学易试题君之单元测试君2024届高一上数学期末联考试题含解析_第3页](http://file4.renrendoc.com/view/15fac7e7a6c399a95a6c4b66fd9224d7/15fac7e7a6c399a95a6c4b66fd9224d73.gif)
![学易试题君之单元测试君2024届高一上数学期末联考试题含解析_第4页](http://file4.renrendoc.com/view/15fac7e7a6c399a95a6c4b66fd9224d7/15fac7e7a6c399a95a6c4b66fd9224d74.gif)
![学易试题君之单元测试君2024届高一上数学期末联考试题含解析_第5页](http://file4.renrendoc.com/view/15fac7e7a6c399a95a6c4b66fd9224d7/15fac7e7a6c399a95a6c4b66fd9224d75.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学易试题君之单元测试君2024届高一上数学期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在下列给出的函数中,以为周期且在区间内是减函数的是()A. B.C. D.2.已知命题:,总有,则命题的否定为()A.,使得 B.,使得C.,总有 D.,总有3.为了得到函数的图象,只需将函数的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度4.下列函数中,与函数是同一函数的是()A. B.C. D.5.直线与曲线有且仅有个公共点,则实数的取值范围是A. B.C. D.6.已知,则的值为()A B.1C. D.7.某几何体的三视图如图所示,则该几何体的体积为()A. B.C. D.8.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且9.如果函数在区间上单调递减,则的取值范围是()A. B.C. D.以上选项均不对10.已知,则函数与函数的图象可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.关于函数f(x)=有如下四个命题:①f(x)的图象关于y轴对称②f(x)的图象关于原点对称③f(x)的图象关于直线x=对称④f(x)的最小值为2其中所有真命题的序号是__________12.已知幂函数在区间上单调递减,则___________.13.角的终边经过点,则的值为______14.已知圆,则过点且与圆C相切的直线方程为_____15.已知,若,则_______;若,则实数的取值范围是__________16.已知点,,在函数的图象上,如图,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设二次函数在区间上的最大值、最小值分别是M、m,集合若,且,求M和m的值;若,且,记,求的最小值18.定义在上的函数满足对于任意实数,都有,且当时,,(1)判断的奇偶性并证明;(2)判断的单调性,并求当时,的最大值及最小值;(3)解关于的不等式.19.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求实数m,n的值;(3)若(+)∥(-+k),求实数k的值20.已知函数(1)当时,在上恒成立,求的取值范围;(2)当时,解关于的不等式21.已知函数的最小正周期为.(1)求的值;(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】的最小正周期为,故A错;的最小正周期为,当时,,所以在上为减函数,故B对;的最小正周期为,当时,,所以在上为增函数,故C错;的最小正周期为,,所以在不单调.综上,选B.2、B【解题分析】根据全称命题的否定性质进行判断即可.【题目详解】因为全称命题的否定是特称命题,所以命题的否定为,使得,故选:B3、D【解题分析】根据诱导公式可得,结合三角函数的平移变换即可得出结果.【题目详解】函数;将函数的图象向左平移个单位长度得到,故选:D4、C【解题分析】确定定义域相同,对应法则相同即可判断【题目详解】解:定义域为,A中定义域为,定义域不同,错误;B中化简为,对应关系不同,错误;C中定义域为,化简为,正确;D中定义域为,定义域不同,错误;故选:C5、A【解题分析】如图所示,直线过点,圆的圆心坐标直线与曲线相切时,,直线与曲线有且仅有个公共点,则实数的取值范围是考点:直线与圆相交,相切问题6、A【解题分析】知切求弦,利用商的关系,即可得解.【题目详解】,故选:A7、A【解题分析】由题可得该几何体为正方体的一半,截去了一个三棱锥,即得.【题目详解】由三视图可知该几何体为正方体的一半,截去了一个三棱锥,如图,则其体积为.故选:A.8、D【解题分析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【题目详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【题目点拨】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..9、A【解题分析】先求出二次函数的对称轴,由区间,在对称轴的左侧,列出不等式解出的取值范围【题目详解】解:函数的对称轴方程为:,函数在区间,上递减,区间,在对称轴的左侧,,故选:A【题目点拨】本题考查二次函数图象特征和单调性,以及不等式的解法,属于基础题10、D【解题分析】根据对数关系得,所以函数与函数的单调性相同即可得到选项.【题目详解】,所以,,不为1的情况下:,函数与函数的单调性相同,ABC均不满足,D满足题意.故选:D【题目点拨】此题考查函数图象的辨析,根据已知条件找出等量关系或不等关系,分析出函数的单调性得解.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解题分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取可判断命题④的正误.综合可得出结论.【题目详解】对于命题①,,,则,所以,函数的图象不关于轴对称,命题①错误;对于命题②,函数的定义域为,定义域关于原点对称,,所以,函数的图象关于原点对称,命题②正确;对于命题③,,,则,所以,函数的图象关于直线对称,命题③正确;对于命题④,当时,,则,命题④错误.故答案为:②③.【题目点拨】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.第ⅠⅠ卷12、【解题分析】根据幂函数定义求出值,再根据单调性确定结果【题目详解】由题意,解得或,又函数在区间上单调递减,则,∴故答案为:13、【解题分析】以三角函数定义分别求得的值即可解决.【题目详解】由角的终边经过点,可知则,,所以故答案为:14、【解题分析】先判断点在圆上,再根据过圆上的点的切线方程的方法求出切线方程.【题目详解】由,则点在圆上,,所以切线斜率为,因此切线方程,整理得.故答案为:【题目点拨】本题考查了过圆上的点的求圆的切线方程,属于容易题.15、①.②.【解题分析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【题目详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,16、【解题分析】设的中点为,连接,由条件判断是等边三角形,并且求出和的长度,即根据周期求.【题目详解】设的中点为,连接,,,且,是等边三角形,并且的高是,,即,,即,解得:.故答案为:【题目点拨】本题考查根据三角函数的周期求参数,意在考查数形结合分析问题和解决问题的能力,属于基础题型,本题的关键是利用直角三角形的性质和三角函数的性质判断的等边三角形.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ).【解题分析】(1)由……………1分又…3分…………4分……………5分……………6分(2)x=1∴,即……………8分∴f(x)=ax2+(1-2a)x+a,x∈[-2,2]其对称轴方程为x=又a≥1,故1-……………9分∴M=f(-2)="9a-2"…………10分m=……………11分g(a)=M+m=9a--1……………14分=………16分18、(1)奇函数,证明见解析;(2)在上是减函数.最大值为6,最小值为-6;(3)答案不唯一,见解析【解题分析】(1)令,求出,再令,由奇偶性的定义,即可判断;(2)任取,则.由已知得,再由奇函数的定义和已知即可判断单调性,由,得到,,再由单调性即可得到最值;(3)将原不等式转化为,再由单调性,即得,即,再对b讨论,分,,,,共5种情况分别求出它们的解集即可.【题目详解】(1)令,则,即有,再令,得,则,故为奇函数;(2)任取,则.由已知得,则,∴,∴在上是减函数由于,则,,.由在上是减函数,得到当时,的最大值为,最小值为;(3)不等式,即为.即,即有,由于在上是减函数,则,即为,即有,当时,得解集为;当时,即有,①时,,此时解集为,②当时,,此时解集为,当时,即有,①当时,,此时解集为,②当时,,此时解集为【题目点拨】本题考查抽象函数的基本性质和不等式问题,常用赋值法探索抽象函数的性质,本题第三小问利用函数性质将不等式转化为含参的一元二次不等式的求解问题,着重考查分类讨论思想,属难题.19、(1)||=5;;(2);(3).【解题分析】(1)利用向量的模长的坐标公式即得;(2)利用向量的线性坐标表示即得;(3)利用向量平行的坐标表示即求.【小问1详解】∵向量=(3,4),=(1,2),∴||=5,;【小问2详解】∵=(3,4),=(1,2),=(-2,-2),=m+n,∴(3,4)=m(1,2)+n(-2,-2)=(m-2n,2m-2n),所以,得;【小问3详解】∵(+)∥(-+k),又-+k=(-1-2k,-2-2k),+=(4,6),∴6(-1-2k)=4(-2-2k),解得,故实数k的值为.20、(1)(2)答案不唯一,具体见解析【解题分析】(1)利用参变量分离法可求得实数的取值范围;(2)分、、、四种情况讨论,结合二次不等式的解法可求得原不等式的解集.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物位仪项目发展计划
- 税务筹划与合规管理策略计划
- 2025年磁共振成像装置项目发展计划
- 2025年房屋整体质量无损检测分析系统项目建议书
- 加速网络传输的配置方法
- 文化艺术品交易免责协议书
- 宿舍舍长述职报告
- 货物铁路运输合同
- Tectoquinone-Standard-生命科学试剂-MCE
- O-2545-hydrochloride-生命科学试剂-MCE
- 小红书种草营销师模拟题及答案(单选+多选+判断)
- 2024年5月26日河南省事业单位联考《公共基础知识》试题
- 高三冲刺毕业家长会课件2024-2025学年
- 工厂安全保安服务管理制度
- 网络安全攻防演练报告
- 新《学前教育法》知识讲座课件
- 【申报书】高职院校高水平专业群建设项目申报书
- 公文写作题库(500道)
- 学校教学常规管理学习活动课件
- 餐饮服务电子教案 学习任务4 摆台技能(4)-西餐宴会餐台摆台
- 广东省湛江市2023-2024学年高一上学期期末考试 历史 含解析
评论
0/150
提交评论