河南驻许昌市2024届高一上数学期末监测模拟试题含解析_第1页
河南驻许昌市2024届高一上数学期末监测模拟试题含解析_第2页
河南驻许昌市2024届高一上数学期末监测模拟试题含解析_第3页
河南驻许昌市2024届高一上数学期末监测模拟试题含解析_第4页
河南驻许昌市2024届高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南驻许昌市2024届高一上数学期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设全集,集合,集合,则集合()A. B.C. D.2.函数的最小值和最大值分别为()A. B.C. D.3.下列表示正确的是A.0∈N B.∈NC.–3∈N D.π∈Q4.函数f(x)=2x+x-2的零点所在区间是()A. B.C. D.5.下列四个函数,最小正周期是的是()A. B.C. D.6.若一束光线从点射入,经直线反射到直线上的点,再经直线反射后经过点,则点的坐标为()A. B.C. D.7.函数的部分图象大致为()A. B.C. D.8.下列函数中,既在R上单调递增,又是奇函数的是()A. B.C. D.9.设,,,则下列大小关系表达正确的是()A. B.C. D.10.已知函数与的图象关于轴对称,当函数和在区间同时递增或同时递减时,把区间叫做函数的“不动区间”.若区间为函数的“不动区间”,则实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,,的图象如下图所示,则,,的大小关系为__________.(用“”号连接)12.已知函数(为常数)是奇函数.(1)求的值与函数的定义域.(2)若当时,恒成立.求实数的取值范围.13.若不等式的解集为,则______,______14.不等式的解集是__________15.如图,已知△和△有一条边在同一条直线上,,,,在边上有个不同的点F,G,则的值为______16.函数的部分图象如图所示,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设a>0,且a≠1,解关于x的不等式18.2020年12月17日凌晨,经过23天月球采样旅行,嫦娥五号返回器携带月球样品成功着陆预定区域,我国首次对外天体无人采样返回任务取得圆满成功,成为时隔40多年来首个完成落月采样并返回地球的国家,标志着我国探月工程“绕,落,回”圆满收官.近年来,得益于我国先进的运载火箭技术,我国在航天领域取得了巨大成就.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度,其中是喷流相对速度,是火箭(除推进剂外)的质量,是推进剂与火箭质量的总和,从称为“总质比”,已知A型火箭的喷流相对速度为.(1)当总质比为200时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的倍,总质比变为原来的,若要使火箭的最大速度至少增加,求在材料更新和技术改进前总质比的最小整数值.参考数据:,.19.已知函数.(1)判断在上的单调性,并证明你的结论;(2)是否存在,使得是奇函数?若存在,求出所有的值;若不存在,请说明理由.20.有两直线和,当a在区间内变化时,求直线与两坐标轴围成四边形面积的最小值21.已知函数的定义域为,在上为增函数,且对任意的,都有(1)试判断的奇偶性;(2)若,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】利用补集和交集的定义可求得结果.【题目详解】由已知可得或,因此,,故选:D.2、C【解题分析】2.∴当时,,当时,,故选C.3、A【解题分析】根据自然数集以及有理数集的含义判断数与集合关系.【题目详解】N表示自然数集,在A中,0∈N,故A正确;在B中,,故B错误;在C中,–3∉N,故C错误;Q表示有理数集,在D中,π∉Q,故D错误故选A【题目点拨】本题考查自然数集、有理数集的含义以及数与集合关系判断,考查基本分析判断能力,属基础题.4、C【解题分析】根据函数零点的存在性定理可得函数零点所在的区间【题目详解】解:函数,,(1),根据函数零点的存在性定理可得函数零点所在的区间为,故选C【题目点拨】本题主要考查函数的零点的存在性定理的应用,属于基础题5、C【解题分析】依次计算周期即可.【题目详解】A选项:,错误;B选项:,错误;C选项:,正确;D选项:,错误.故选:C.6、C【解题分析】由题可求A关于直线的对称点为及关于直线的对称点为,可得直线的方程,联立直线,即得.【题目详解】设A关于直线的对称点为,则,解得,即,设关于直线的对称点为,则,解得,即,∴直线的方程为:代入,可得,故.故选:C.7、A【解题分析】由奇偶性定义判断对称性,再根据解析式判断、上的符号,即可确定大致图象.【题目详解】由题设,且定义域为R,即为奇函数,排除C,D;当时恒成立;,故当时,当时;所以,时,时,排除B;故选:A.8、B【解题分析】逐一判断每个函数的单调性和奇偶性即可.【题目详解】是奇函数,但在R上不单调递增,故A不满足题意;既在R上单调递增,又是奇函数,故B满足题意;、不是奇函数,故C、D不满足题意;故选:B9、D【解题分析】利用中间量来比较三者的大小关系【题目详解】由题.所以.故选:D10、C【解题分析】若区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,则函数f(x)=|2x﹣t|和函数F(x)=|﹣t|在[1,2]上单调性相同,则(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,进而得到答案【题目详解】∵函数y=f(x)与y=F(x)的图象关于y轴对称,∴F(x)=f(﹣x)=|2﹣x﹣t|,∵区间[1,2]为函数f(x)=|2x﹣t|的“不动区间”,∴函数f(x)=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,∵y=2x﹣t和函数y=2﹣x﹣t的单调性相反,∴(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,即≤t≤2,故答案为:C【题目点拨】(1)本题主要考查不动点定义及利用定义解答数学问题的能力,考查指数函数的图像和性质,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)正确理解不动区间的定义,得到(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,是解答的关键二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】函数y=ax,y=xb,y=logcx的图象如图所示,由指数函数y=ax,x=2时,y∈(2,3)对数函数y=logcx,x=2,y∈(0,1);幂函数y=xb,x=2,y∈(1,2);可得a∈(1,2),b∈(0,1),c∈(2,+∞)可得b<a<c故答案为b<a<c12、(1),定义域为或;(2).【解题分析】(1)根据函数是奇函数,得到,求出,再解不等式,即可求出定义域;(2)先由题意,根据对数函数的性质,求出的最小值,即可得出结果.【题目详解】(1)因为函数是奇函数,所以,所以,即,所以,令,解得或,所以函数的定义域为或;(2),当时,所以,所以.因为,恒成立,所以,所以的取值范围是.【题目点拨】本题主要考查由函数奇偶性求参数,考查求具体函数的定义域,考查含对数不等式,属于常考题型.13、①.②.【解题分析】由题设知:是的根,应用根与系数关系即可求参数值.【题目详解】由题设,是的根,∴,即,.故答案为:,.14、【解题分析】根据对数不等式解法和对数函数的定义域得到关于的不等式组,解不等式组可得所求的解集【题目详解】原不等式等价于,所以,解得,所以原不等式的解集为故答案为【题目点拨】解答本题时根据对数函数的单调性得到关于的不等式组即可,解题中容易出现的错误是忽视函数定义域,考查对数函数单调性的应用及对数的定义,属于基础题15、16【解题分析】由题意易知:△和△为全等的等腰直角三角形,斜边长为,,故答案为16点睛:平面向量数量积类型及求法(1)求平面向量数量积有三种方法:一是夹角公式a·b=|a||b|cosθ;二是坐标公式a·b=x1x2+y1y2;三是利用数量积的几何意义.本题就是利用几何意义处理的.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.16、##【解题分析】函数的图象与性质,求出、与的值,再利用函数的周期性即可求出答案.【题目详解】解:由图象知,,∴,又由图象可得:,可求得,∴,∴,∴故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、当时,不等式的解集为;当时,不等式的解集为【解题分析】对进行分类讨论,结合指数函数的单调性求得不等式的解集.【题目详解】当时,在上递减,所以,即,解得,即不等式的解集为.当时,在上递增,所以,即,解得或,即不等式的解集为.18、(1);(2)在材料更新和技术改进前总质比最小整数为74.【解题分析】(1)代入公式中直接计算即可(2)由题意得,,则,求出的范围即可【题目详解】(1),(2),.因为要使火箭的最大速度至少增加,所以,即:,所以,即,所以,因为,所以.所以在材料更新和技术改进前总质比的最小整数为74.【题目点拨】此题考查了函数的实际运用,考查运算求解能力,解题的关键是正确理解题意,列出不等式,属于中档题19、(1)减函数,证明见解析;(2),理由见解析【解题分析】(1)由单调性定义判断;(2)根据奇函数的性质由求得,然后再由奇函数定义验证【题目详解】(1)是上的减函数设,则,所以,,即,,所以,所以是上的减函数(2)若是奇函数,则,,时,,所以,所以为奇函数所以时,函数为奇函数20、.【解题分析】利用直线方程,求出相关点的坐标,利用直线系解得yE=2.根据S四边形OCEA=S△BCE﹣S△OAB即可得出【题目详解】∵0<a<2,可得l1:ax﹣2y=2a﹣4,与坐标轴的交点A(0,﹣a+2),B(2,0)l2:2x﹣(1﹣a2)y﹣2﹣2a2=0,与坐标轴的交点C(a2+1,0),D(0,)两直线ax﹣2y﹣2a+4=0和2x﹣(1﹣a2)y﹣2﹣2a2=0,都经过定点(2,2),即yE=2∴S四边形OCEA=S△BCE﹣S△OAB|BC|•yE|OA|•|OB|(a21)×2(2﹣a)×(2)=a2﹣a+3=(a)2,当a时取等号∴l1,l2与坐标轴围成的四边形面积的最小值为【题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论