贵州省遵义市务川民族中学2024届高一上数学期末联考试题含解析_第1页
贵州省遵义市务川民族中学2024届高一上数学期末联考试题含解析_第2页
贵州省遵义市务川民族中学2024届高一上数学期末联考试题含解析_第3页
贵州省遵义市务川民族中学2024届高一上数学期末联考试题含解析_第4页
贵州省遵义市务川民族中学2024届高一上数学期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省遵义市务川民族中学2024届高一上数学期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图象过点,则该函数的解析式为()A. B.C. D.2.已知设alog30.2,b30.2,c0.23,则a,b,c的大小关系是()A.abc B.acbC.bac D.bca3.已知向量,若,则()A.1或4 B.1或C.或4 D.或4.已知一元二次方程的两个不等实根都在区间内,则实数的取值范围是()A. B.C. D.5.已知直线,若,则的值为()A.8 B.2C. D.-26.我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休”.在数学学习中和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数图象的特征,如函数的大致图象是()A. B.C. D.7.点关于直线的对称点是A. B.C. D.8.将函数的图像向右平移个单位后得到的图像关于直线对称,则的最小正值为A. B.C. D.9.已知sin(α-π)+cos(π-α)A.-2 B.2C.-3 D.310.如图,在正三棱柱中,,若二面角的大小为,则点C到平面的距离为()A.1 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知集合,,则集合中元素的个数为__________12.请写出一个同时满足下列两个条件的函数:____________.(1),若则(2)13.函数的最大值为____________14.函数(且)的图象必经过点___________.15.若直线:与直线:互相垂直,则实数的值为__________16.在内,使成立的x的取值范围是____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义在上的函数(且)为奇函数(1)求实数的值;(2)若函数的图象经过点,求使方程在有解的实数的取值范围;(3)不等式对于任意的恒成立,求实数的取值范围.18.已知(1)当时,求的值;(2)若的最小值为,求实数的值;(3)是否存在这样的实数,使不等式对所有都成立.若存在,求出的取值范围;若不存在,请说明理由19.已知平面向量,,,且,.(1)求和:(2)若,,求向量与向量夹角的大小.20.如图,公路围成的是一块顶角为的角形耕地,其中,在该块土地中处有一小型建筑,经测量,它到公路的距离分别为,现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园.(1)以为坐标原点建立适当的平面直角坐标系,并求出点的坐标;(2)三条公路围成的工业园区的面积恰为,求公路所在直线方程.21.已知集合A=x13≤log(1)求A,B;(2)求∁U(3)如果C=xx<a,且A∩C≠∅,求a

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】设出幂函数的解析式,根据点求得解析式.【题目详解】设,依题意,所以.故选:C2、D【解题分析】由指数和对数函数单调性结合中间量0和1来比较a,b,c的大小关系即可有结果.【题目详解】因为,,所以故选:D3、B【解题分析】根据向量的坐标表示,以及向量垂直的条件列出方程,即可求解.【题目详解】由题意,向量,可得,因为,则,解得或.故选:B.4、D【解题分析】设,根据二次函数零点分布可得出关于实数的不等式组,由此可解得实数的取值范围.【题目详解】设,则二次函数的两个零点都在区间内,由题意,解得.因此,实数的取值范围是.故选:D.5、D【解题分析】根据两条直线垂直,列方程求解即可.【题目详解】由题:直线相互垂直,所以,解得:.故选:D【题目点拨】此题考查根据两条直线垂直,求参数的取值,关键在于熟练掌握垂直关系的表达方式,列方程求解.6、A【解题分析】先判断函数的奇偶性,再根据特殊点的函数值选出正确答案.【题目详解】对于,∵,∴为偶函数,图像关于y轴对称,排除D;由,排除B;由,排除C.故选:A.【题目点拨】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象7、A【解题分析】设对称点为,则,则,故选A.8、C【解题分析】函数,将其图像向右平移个单位后得到∵这个图像关于直线对称∴,即∴当时取最小正值为故选C点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.9、B【解题分析】应用诱导公式及正余弦的齐次式,将题设等式转化为-tanα-1【题目详解】sin(α-π)+∴-tanα-1=-3tan故选:B.10、C【解题分析】取的中点,连接和,由二面角的定义得出,可得出、、的值,由此可计算出和的面积,然后利用三棱锥的体积三棱锥的体积相等,计算出点到平面的距离.【题目详解】取的中点,连接和,根据二面角的定义,.由题意得,所以,.设到平面的距离为,易知三棱锥的体积三棱锥的体积相等,即,解得,故点C到平面的距离为.故选C.【题目点拨】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】依题意,故,即元素个数为个.12、,答案不唯一【解题分析】由条件(1),若则.可知函数为R上增函数;由条件(2).可知函数可能为指数型函数.【题目详解】令,则为R上增函数,满足条件(1).又,故即成立.故答案为:,(,等均满足题意)13、【解题分析】利用二倍角公式将化为,利用三角函数诱导公式将化为,然后利用二次函数的性质求最值即可【题目详解】因为,所以当时,取到最大值.【题目点拨】本题考查了三角函数化简与求最值问题,属于中档题14、【解题分析】令得,把代入函数的解析式得,即得解.【题目详解】解:因为函数,其中,,令得,把代入函数的解析式得,所以函数(且)的图像必经过点的坐标为.故答案为:15、-2【解题分析】由于两条直线垂直,故.16、【解题分析】根据题意在同一个坐标系中画出在内的函数图像,由图求出不等式的解集【题目详解】解:在同一个坐标系中画出在内的函数图像,如图所示,则使成立的x的取值范围是,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1(2)(3)答案见解析【解题分析】(1)根据题意可得,即可得解;(2)根据函数的图象经过点,可得函数经过点,从而可求得,在求出函数在时的值域,即可得出答案;(3)原不等式成立即为,令,则,分和两种情况讨论,从而可得出答案.【小问1详解】解:因为函数是定义在上的奇函数,所以,解得,当时,,此时,故当时,函数为奇函数,所以;【小问2详解】解:因为函数的图象经过点,所以函数经过点,故,即,当时,函数为增函数,故,为使方程有解,则,所以;【小问3详解】解:原不等式成立即为,当时,函数单调递增,故只要即可,令,则,∵,∴,∴对恒成立,由得;由得∴;同理,当时,函数单调递减,故只要即可,∴对恒成立,解得;综上可知,当时,;当时,18、(1)(2)或(3)存在,的取值范围为【解题分析】(1)先化简,再代入进行求解;(2)换元法,化为二次函数,结合对称轴分类讨论,求出最小值时m的值;(3)换元法,参变分离,转化为在恒成立,根据单调性求出取得最大值,进而求出的取值范围.【小问1详解】,当时,【小问2详解】设,则,,,其对称轴为,的最小值为,则;的最小值为;则综上,或【小问3详解】由,对所有都成立.设,则,恒成立,在恒成立,当时,递减,则在递增,时取得最大值得,∴所以存在符合条件的实数,且m的取值范围为19、(1),;(2).【解题分析】(1)本题首先可根据、得出,然后通过计算即可得出结果;(2)本题首先可根据题意得出以及,然后求出、以及的值,最后根据向量的数量积公式即可得出结果.【题目详解】(1)因为,,,且,,所以,解得,故,.(2)因为,,所以,因为,,所以,,,,设与的夹角为,则,因为,所以,向量与向量的夹角为.【题目点拨】本题考查向量平行、向量垂直以及向量的数量积的相关性质,若、且,则,考查通过向量的数量积公式求向量的夹角,考查计算能力,是中档题.20、(1);(2).【解题分析】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立平面直角坐标系.根据条件求出直线的方程,设出点坐标,代点到直线的距离公式即可求出所求;(2)由(1)及题意设出直线的方程后,即可求得点的横坐标,与点的纵坐标,由求得后,即可求解.【题目详解】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立如图所示的平面直角坐标系由题意可设点,且直线的斜率为,并经过点,故直线的方程为:,又因点到的距离为,所以,解得或(舍去)所以点坐标为.(2)由题意可知直线的斜率一定存在,故设其直线方程为:,与直线的方程:,联立后解得:,对直线方程:,令,得,所以,解得,所以直线方程为:,即:.【题目点拨】本题以直线方程的相关知识为背景,旨在考查学生分析和解决问题的能力,属于中档题.21、(1)A=2,8,(2)∁(3)2,+∞【解题分析】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论