安徽凤台一中2024届数学高一上期末学业水平测试模拟试题含解析_第1页
安徽凤台一中2024届数学高一上期末学业水平测试模拟试题含解析_第2页
安徽凤台一中2024届数学高一上期末学业水平测试模拟试题含解析_第3页
安徽凤台一中2024届数学高一上期末学业水平测试模拟试题含解析_第4页
安徽凤台一中2024届数学高一上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽凤台一中2024届数学高一上期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,,,则的大小顺序是A. B.C. D.2.函数的最大值为()A. B.C. D.3.某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为()A. B.C. D.4.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>aC.a>c>b D.a>b>c5.定义在上的偶函数满足,且在上是减函数,若,是锐角三角形的两个内角,则下列各式一定成立的是()A. B.C. D.6.已知函数在[2,3]上单调递减,则实数a的取值范围是()A. B.C. D.7.若,是第二象限的角,则的值等于()A. B.7C. D.-78.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.49.下列函数中,最小正周期为且图象关于原点对称的函数是()A. B.C. D.10.若集合A={x|-2<x<1},B={x|x<-1或x>3},则A∩B=()A.{x|-2<x<-1} B.{x|-2<x<3}C.{x|-1<x<1} D.{x|1<x<3}二、填空题:本大题共6小题,每小题5分,共30分。11.函数y=的单调递增区间是____.12.直线被圆截得弦长的最小值为______.13.已知实数x、y满足,则的最小值为____________.14.若,则________.15.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.16.已知tanα=3,则sinα(cosα-sinα)=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点.(1)求;(2)求的值.18.已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记的值域分别为集合,设,若是成立的必要条件,求实数的取值范围.19.已知正方体,分别为和上的点,且,.(1)求证:;(2)求证:三条直线交于一点.20.已知函数的部分图象如图所示.(1)写出函数f(x)的最小正周期T及ω、φ的值;(2)求函数f(x)在区间上的最大值与最小值.21.已知函数的最小正周期为,其中(1)求的值;(2)当时,求函数单调区间;(3)求函数在区间上的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【题目详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【题目点拨】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.2、C【解题分析】先利用辅助角公式化简,再由正弦函数的性质即可求解.【题目详解】,所以当时,取得最大值,故选:C3、A【解题分析】设小张与小王的到校时间分别为6:00后第分钟,第分钟,由题意可画出图形,利用几何概型中面积比即可求解.【题目详解】设小张与小王的到校时间分别为6:00后第分钟,第分钟,可以看成平面中的点试验的全部结果所构成的区域为是一个正方形区域,对应的面积,则小张与小王至少相差5分钟到校事件(如阴影部分)则符合题意的区域,由几何概型可知小张与小王至少相差5分钟到校的概率为.故选:A【题目点拨】本题考查了几何概率模型,解题的关键是画出满足条件的区域,属于基础题.4、D【解题分析】,,;且;.考点:对数函数的单调性.5、A【解题分析】根据题意,先得到是周期为的函数,再由函数单调性和奇偶性,得出在区间上是增函数;根据三角形是锐角三角,得到,得出,从而可得出结果.【题目详解】因为偶函数满足,所以函数是周期为的函数,又在区间上是减函数,所以在区间上是减函数,因为偶函数关于轴对称,所以在区间上是增函数;又,是锐角三角形的两个内角,所以,即,因此,即,所以.故选:A.【题目点拨】本题主要考查由函数的基本性质比较大小,涉及正弦函数的单调性,属于中档题.6、C【解题分析】根据复合函数的单调性法则“同增异减”求解即可.【题目详解】由于函数在上单调递减,在定义域内是增函数,所以根据复合函数的单调性法则“同增异减”得:在上单调递减,且,所以且,解得:.故的取值范围是故选:C.7、B【解题分析】先由同角三角函数关系式求出,再利用两角差的正切公式即可求解.【题目详解】因为,是第二象限的角,所以,所以.所以.故选:B8、D【解题分析】由得,又由得函数为偶函数,所以选D9、A【解题分析】求出函数的周期,函数的奇偶性,判断求解即可【题目详解】解:y=cos(2x)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2xsin(2x),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosxsin(x),函数是非奇非偶函数,周期为2π,所以D不正确;故选A考点:三角函数的性质.10、A【解题分析】直接根据交集的定义即可得解.【题目详解】解:因为A={x|-2<x<1},B={x|x<-1或x>3},所以.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】设函数,再利用复合函数的单调性原理求解.【题目详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:12、【解题分析】先求直线所过定点,根据几何关系求解【题目详解】,由解得所以直线过定点A(1,1),圆心C(0,0),由几何关系知当AC与直线垂直时弦长最小.弦长最小值为.故答案为:13、【解题分析】利用基本不等式可得,即求.【题目详解】依题意,当且仅当,即时等号成立.所以的最小值为.故答案为:.14、【解题分析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【题目详解】因为,由故答案为:15、①.1②.【解题分析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【题目详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【题目点拨】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.16、【解题分析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【题目详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【题目点拨】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据任意角三角函数的定义即可求解tanθ;(2)分式分子分母同时除以cos2θ化弦为切即可.【小问1详解】∵角的终边经过点,由三角函数的定义知,;【小问2详解】∵,∴.18、(1)(2)【解题分析】(1)根据幂函数的定义求解;(2)由条件可知,再根据集合之间的关系建立不等式求解即可.【小问1详解】由幂函数的定义得:,解得或,当时,在上单调递减,与题设矛盾,舍去;当时,上单调递增,符合题意;综上可知:.【小问2详解】由(1)得:,当时,,即.当时,,即,由是成立的必要条件,则,显然,则,即,所以实数的取值范围为.19、(1)详见解析;(2)详见解析【解题分析】(1)连结和,由条件可证得和,从而得到∥.(2)结合题意可得直线和必相交,根据线面关系再证明该交点直线上即可得到结论【题目详解】证明:(1)如图,连结和,在正方体中,,∵,∴,又,,∴又在正方体中,,,∴,又,∴同理可得,又,∴∴∥.(2)由题意可得(或者和不平行),又由(1)知∥,所以直线和必相交,不妨设,则,又,所以,同理因为,所以,所以、、三条直线交于一点【题目点拨】(1)证明两直线平行时,可根据三种平行间的转化关系进行证明,也可利用线面垂直的性质进行证明,解题时要注意合理选择方法进行求解(2)证明三线共点的方法是:先证明其中的两条直线相交,再证明该交点在第三条直线上.解题时要依据空间中的线面关系及三个公理,并结合图形进行求解20、(1),,;(2)最小值为,最大值为1.【解题分析】(1)由函数的部分图象求解析式,由周期求出,代入求出的值,可得函数的解析式;(2)由以上可得,,再利用正弦函数的定义域和值域,求得函数的最值.【题目详解】(1)根据函数的部分图象,可得,解得,,将代入可得,解得;(2)由以上可得,,,,,当时,即,函数取得最小值为.当时,即,函数取得最大值为1.【题目点拨】本题考查三角函数部分图象求解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论