2024届安徽省金汤白泥乐槐六校高一上数学期末质量检测试题含解析_第1页
2024届安徽省金汤白泥乐槐六校高一上数学期末质量检测试题含解析_第2页
2024届安徽省金汤白泥乐槐六校高一上数学期末质量检测试题含解析_第3页
2024届安徽省金汤白泥乐槐六校高一上数学期末质量检测试题含解析_第4页
2024届安徽省金汤白泥乐槐六校高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省金汤白泥乐槐六校高一上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线过,两点,则直线的斜率为A. B.C. D.2.2019年7月,中国良渚古城遗址获准列入世界遗产名录,标志着中华五千年文明史得到国际社会认可.考古科学家在测定遗址年龄的过程中利用了“放射性物质因衰变而减少”这一规律.已知样本中碳14的质量N随时间t(单位:年)的衰变规律满足(表示碳14原有的质量).经过测定,良渚古城遗址文物样本中碳14的质量是原来的至,据此推测良渚古城存在的时期距今约()年到5730年之间?(参考数据:,)A.4011 B.3438C.2865 D.22923.若a=40.9,b=log415,c=80.4,则()A.b>c>a B.a>b>cC.c>a>b D.a>c>b4.已知函数的值域为,则实数m的值为()A.2 B.3C.9 D.275.已知函数,则函数()A.有最小值 B.有最大值C.有最大值 D.没有最值6.过点(5,2),且在y轴上的截距是在x轴上的截距的2倍的直线方程是()A.2x+y-12=0 B.x-2y-1=0或2x-5y=0C.x-2y-1=0 D.2x+y-12=0或2x-5y=07.命题关于的不等式的解集为的一个充分不必要条件是()A. B.C. D.8.若命题“,”是假命题,则实数的取值范围为()A. B.C. D.9.为了得到函数的图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位10.已知点,向量,若,则点的坐标为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若命题“,”为假命题,则实数的取值范围为______.12.函数的值域为___________.13.已知幂函数(为常数)的图像经过点,则__________14.已知点在角的终边上,则___________;15.__________16.已知函数,则=_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某国际性会议纪念章的一特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向该会议的组织委员会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时,该店一年可销售2000枚,经过市场调研发现,每枚纪念章的销售价格在每枚20元的基础上,每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元(每枚的销售价格应为正整数).(1)写出该特许专营店一年内销售这种纪念章所获得的利润(元)与每枚纪念章的销售价格的函数关系式;(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出这个最大值;18.某行业计划从新的一年2020年开始,每年的产量比上一年减少的百分比为,设n年后(2020年记为第1年)年产量为2019年的a倍.(1)请用a,n表示x.(2)若,则至少要到哪一年才能使年产量不超过2019年的25%?参考数据:,.19.汕头市某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?20.在三棱锥中,,,O是线段AC的中点,M是线段BC的中点.(1)求证:PO⊥平面ABC;(2)求直线PM与平面PBO所成的角的正弦值.21.已知函数.(1)求的定义域;(2)若函数,且对任意的,,恒成立,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由斜率的计算公式计算即可【题目详解】因为直线过,两点,所以直线的斜率为.【题目点拨】本题考查已知两点坐标求直线斜率问题,属于基础题2、A【解题分析】由已知条件可得,两边同时取以2为底的对数,化简计算可求得答案【题目详解】因为碳14的质量是原来的至,所以,两边同时取以2为底的对数得,所以,所以,则推测良渚古城存在的时期距今约在4011年到5730年之间.故选:A.3、D【解题分析】把化为以为底的指数和对数,利用中间值“”以及指数函数的单调性即可比较大小.【题目详解】,,,又因为为增函数,所以,即综上可得,a>c>b故选:D【题目点拨】本题考查了利用中间值以及函数的单调性比较数的大小,属于基础题.4、C【解题分析】根据对数型复合函数的性质计算可得;【题目详解】解:因为函数的值域为,所以的最小值为,所以;故选:C5、B【解题分析】换元法后用基本不等式进行求解.【题目详解】令,则,因为,,故,当且仅当,即时等号成立,故函数有最大值,由对勾函数的性质可得函数,即有最小值.故选:B6、D【解题分析】根据直线是否过原点进行分类讨论,结合截距式求得直线方程.【题目详解】当直线过原点时,直线方程为,即.当直线不过原点时,设直线方程为,代入得,所以直线方程为.故选:D7、D【解题分析】根据三个二次式的性质,求得命题的充要条件,结合选项和充分不必要的判定方法,即可求解.【题目详解】由题意,命题不等式的解集为,即不等式的解集为,可得,解得,即命题的充要条件为,结合选项,可得,所以是的一个充分不必要条件.故选:D.8、A【解题分析】由题意知原命题为假命题,故命题的否定为真命题,再利用,即可得到答案.【题目详解】由题意可得“”是真命题,故或.故选:A.9、B【解题分析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【题目详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x的图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【题目点拨】本题主要考查了函数y=Asin(ωx+φ)图象变换规律的简单应用,属于基础题10、B【解题分析】设点坐标为,利用向量的坐标运算建立方程组,解之可得选项.【题目详解】设点坐标为,,A,所以,又,,所以.解得,解得点坐标为.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】命题为假命题时,二次方程无实数解,据此可求a的范围.【题目详解】若命题“,”为假命题,则一元二次方程无实数解,∴.∴a的取值范围是:.故答案为:.12、【解题分析】由函数定义域求出的取值范围,再由的单调性即可得解.【题目详解】函数的定义域为R,而,当且仅当x=0时取“=”,又在R上单调递减,于是有,所以函数的值域为.故答案为:13、3【解题分析】设,依题意有,故.14、##【解题分析】根据三角函数得定义即可的解.【题目详解】解:因为点在角的终边上,所以.故答案为:.15、2【解题分析】考点:对数与指数的运算性质16、【解题分析】按照解析式直接计算即可.【题目详解】.故答案为:-3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解题分析】(1)根据题意列函数关系式即可,需注意,当时,由题意不生产纪念章,故;(2)利用配方法分别求解不同条件下的最值,并进行比较即可,需注意每枚的销售价格应为正整数【题目详解】(1)依题意,得,整理可得(2)由(1)可得,当时,则当时,;当时,则当或时,;因为,则当时,【题目点拨】本题考查函数关系式在生活中的应用,考查配方法求最值,实际应用中要注意自变量的取值范围18、(1)(2)2033【解题分析】(1)每年的产量比上一年减少的百分比为,那么n年后的产量为2019年的,即得;(2)将代入(1)中得到式子,解n,n取正整数。【题目详解】(1)依题意得,即,即.(2)由题得,即,则,即,则,又,,∴n的最小值为14.故至少要到2033年才能使年产能不超过2019年25%.【题目点拨】本题是一道函数实际应用题,注意求n时,n表示某一年,要取整数。19、(1)2400(元);(2)应将售价定为125元,最大销售利润是2500元.【解题分析】(1)由销售利润=单件成本×销售量,即可求商家降价前每星期销售利润;(2)由题意得,根据二次函数的性质即可知最大销售利润及对应的售价.【题目详解】(1)由题意,商家降价前每星期的销售利润为(元);(2)设售价定为元,则销售利润.当时,有最大值2500.∴应将售价定为125元,最大销售利润是2500元.20、(1)证明见解析;(2)【解题分析】(1)利用勾股定理得出线线垂直,结合等边三角形的特点,再次利用勾股定理得出线线垂直,进而得出线面垂直;(2)根据线面垂直面,得出线和面的夹角,从而得出线面角的正弦值.【题目详解】(1)由,有,从而有,且又是边长等于的等边三角形,.又,从而有又平面.(2)过点作交于点,连.由(1)知平面,得,又平面是直线与平面所成的角.由(1),从而为线段的中点,,,所以直线与平面所成的角的正弦值为21、(1).(2)(2,+∞).【解题分析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论