2024届安徽马鞍山市数学高一上期末学业水平测试试题含解析_第1页
2024届安徽马鞍山市数学高一上期末学业水平测试试题含解析_第2页
2024届安徽马鞍山市数学高一上期末学业水平测试试题含解析_第3页
2024届安徽马鞍山市数学高一上期末学业水平测试试题含解析_第4页
2024届安徽马鞍山市数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽马鞍山市数学高一上期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,,则A∩B中元素的个数为()A.2 B.3C.4 D.52.“”是“”的条件A.充分不必要条件 B.必要不充分条件C.充要条件 D.即不充分也不必要条件3.设m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是A.若,,则B.若,,,则C.若,,则D.若,,,则4.若函数且,则该函数过的定点为()A. B.C. D.5.下列函数中,最小正周期为π2A.y=cosxC.y=cos2x6.下列选项中,两个函数表示同一个函数的是()A., B.,C., D.,7.已知点A(2,0)和点B(﹣4,2),则|AB|=()A. B.2C. D.28.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是,则它的表面积是A.17π B.18πC.20π D.28π9.设,,,则的大小关系为()A. B.C. D.10.已知、是方程两个根,且、,则的值是()A. B.C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.请写出一个最小正周期为,且在上单调递增的函数__________12.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.13.已知函数,若函数恰有4个不同的零点,则实数的取值范围是________.14.已知,用m,n表示为___________.15.已知是定义在上的偶函数,且当时,,则当时,___________.16.已知幂函数的图象过点,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集为实数集,集合,.(1)求及;(2)设集合,若,求实数的取值范围.18.某网上电子商城销售甲、乙两种品牌的固态硬盘,甲、乙两种品牌的固态硬盘保修期均为3年,现从该商城已售出的甲、乙两种品牌的固态硬盘中各随机抽取50个,统计这些固态硬盘首次出现故障发生在保修期内的数据如下:型号甲乙首次出现故障的时间x(年)硬盘数(个)212123假设甲、乙两种品牌的固态硬盘首次出现故障相互独立.(1)从该商城销售的甲品牌固态硬盘中随机抽取一个,试估计首次出现故障发生在保修期内的概率;(2)某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,试估计恰有一个首次出现故障发生在保修期的第3年(即)的概率.19.冰雪装备器材产业是冰雪产业的重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?20.已知.(1)求的值(2)求的值.21.2009年某市某地段商业用地价格为每亩60万元,由于土地价格持续上涨,到2021年已经上涨到每亩120万元.现给出两种地价增长方式,其中是按直线上升的地价,是按对数增长的地价,t是2009年以来经过的年数,2009年对应的t值为0(1)求,的解析式;(2)2021年开始,国家出台“稳定土地价格”的相关调控政策,为此,该市要求2025年的地价相对于2021年上涨幅度控制在10%以内,请分析比较以上两种增长方式,确定出最合适的一种模型.(参考数据:)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】采用列举法列举出中元素的即可.【题目详解】由题意,,故中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2、A【解题分析】若,则;若,则,推不出.所以“”是“”成立的充分不必要条件.故选A考点:充分必要条件3、C【解题分析】根据空间中直线与平面,平面与平面的位置关系即得。【题目详解】A.因为垂直于同一平面的两个平面可能平行或相交,不能确定两平面之间是平行关系,故不正确;B.若,,,则或相交,故不正确;C.由垂直同一条直线的两个平面的关系判断,正确;D.若,,,则或相交,故不正确.故选:C【题目点拨】本题考查空间直线和平面,平面和平面的位置关系,考查学生的空间想象能力。4、D【解题分析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【题目详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【题目点拨】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.5、D【解题分析】利用三角函数的周期性求解.【题目详解】A.y=cosx周期为T=2πB.y=tanx的周期为C.y=cos2x的周期为D.y=tan2x的周期为故选:D6、C【解题分析】根据函数的定义域,即可判断选项A的两个函数不是同一个函数,根据函数解析式不同,即可判断选项B,D的两函数都不是同一个函数,从而为同一个函数的只能选C【题目详解】A.的定义域为{x|x≠0},y=1的定义域为R,定义域不同,不是同一个函数;B.和y=|x|的解析式不同,不是同一函数;C.y=x的定义域为R,y=lnex=x的定义域为R,定义域和解析式都相同,是同一个函数;D.=|x-1|,=x-1,解析式不同,不是同一个函数故选C【题目点拨】本题考查同一函数的定义,判断两函数是否为同一个函数的方法:看定义域和解析式是否都相同7、D【解题分析】由平面两点的距离公式计算可得所求值.【题目详解】由点A(2,0)和点B(﹣4,2),所以故选:D【题目点拨】本题考查平面上两点间的距离,直接用平面上两点间的距离公式解决,属于基础题.8、A【解题分析】由三视图知,该几何体的直观图如图所示:是一个球被切掉左上角的,即该几何体是个球,设球的半径为,则,解得,所以它的表面积是的球面面积和三个扇形面积之和,即,故选A【考点】三视图及球的表面积与体积【名师点睛】由于三视图能有效地考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般与几何体的表面积与体积相结合.由三视图还原出原几何体是解决此类问题的关键.9、D【解题分析】利用指数函数和对数函数的单调性即可判断.【题目详解】,,,,.故选:D.10、B【解题分析】先用根与系数的关系可得+=,=4,从而可得<0,<0,进而,所以,然后求的值,从而可求出的值.【题目详解】由题意得+=,=4,所以,又、,故,所以,又.所以.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、或(不唯一).【解题分析】根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可.【题目详解】解:根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可,如或满足题意故答案为:或(不唯一).12、2【解题分析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【题目详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:13、【解题分析】本题首先可根据函数解析式得出函数在区间和上均有两个零点,然后根据在区间上有两个零点得出,最后根据函数在区间上有两个零点解得,即可得出结果.【题目详解】当时,令,得,即,该方程至多两个根;当时,令,得,该方程至多两个根,因为函数恰有4个不同的零点,所以函数在区间和上均有两个零点,函数在区间上有两个零点,即直线与函数在区间上有两个交点,当时,;当时,,此时函数的值域为,则,解得,若函数在区间上也有两个零点,令,解得,,则,解得,综上所述,实数的取值范围是,故答案为:.【题目点拨】本题考查根据函数零点数目求参数的取值范围,可将其转化为两个函数的交点数目进行求解,考查函数最值的应用,考查推理能力与计算能力,考查分类讨论思想,是难题.14、【解题分析】结合换底公式以及对数的运算法则即可求出结果.详解】,故答案为:.15、【解题分析】设,则,求出的表达式,再由即可求解.【题目详解】设,则,所以,因为是定义在上的偶函数,所以,所以当时,故答案为:.16、3【解题分析】先利用待定系数法代入点的坐标,求出幂函数的解析式,再求的值.【题目详解】设,由于图象过点,得,,,故答案为3.【题目点拨】本题考查幂函数的解析式,以及根据解析式求函数值,意在考查对基础知识的掌握与应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】(1)先求出集合A、B,再求,;(2)对是否为分类讨论,分别求出a的范围.【小问1详解】由可得又,则所以,【小问2详解】当时,,此时;当时,,则;综上可得18、(1);(2)【解题分析】(1)由频率表示概率即可求出;(2)先分别求出从甲、乙两种品牌随机抽取一个,首次出现故障发生在保修期的第3年的概率,即可求出恰有一个首次出现故障发生在保修期的第3年的概率.【题目详解】解:(1)在图表中,甲品牌的个样本中,首次出现故障发生在保修期内的概率为:,设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内为事件,利用频率估计概率,得,即从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内的概率为:;(2)设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,从该商城销售的乙品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,利用频率估计概率,得:,则,某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,恰有一个首次出现故障发生在保修期的第3年的概率为:.【题目点拨】关键点点睛:本题解题的关键是利用频率表示概率.19、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解题分析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.20、(1)(2)【解题分析】(1)由两边平方可得,利用同角关系;(2)由(1)可知从而.【题目详解】(1)∵.∴,即,(2)由(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论