




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届统编版(数学高一上期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,则下列判断正确的是A.函数是奇函数,且在R上是增函数B.函数偶函数,且在R上是增函数C.函数是奇函数,且在R上是减函数D.函数是偶函数,且在R上是减函数2.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度3.已知,,,则a,b,c大小关系为()A. B.C. D.4.若函数在定义域上的值域为,则()A. B.C. D.5.古希腊数学家阿基米德最为满意的一个数学发现是“圆柱容球”,即在球的直径与圆柱底面的直径和圆柱的高相等时,球的体积是圆柱体积的,且球的表面积也是圆柱表面积的.已知体积为的圆柱的轴截面为正方形.则该圆柱内切球的表面积为()A B.C. D.6.若不等式(>0,且≠1)在[1,2]上恒成立,则的取值范围是A.(1,2) B.(2,)C.(0,1)(2,) D.(0,)7.要得到函数f(x)=cos(2x-)的图象,只需将函数g(x)=cos2x的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移单位长度 D.向右平移个单位长度8.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是A. B.C. D.9.的值是A. B.C. D.10.若,,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.正方体中,分别是,的中点,则直线与所成角的余弦值是_______.12.已知点A(-1,1),B(2,-2),若直线l:x+my+m=0与线段AB相交(包含端点的情况),则实数m的取值范围是________________.13.已知函数若存在实数使得函数的值域为,则实数的取值范围是__________14.已知函数,则函数的值域为______15.已知=,则=_____.16.如果直线与直线互相垂直,则实数__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设,且.(1)求的值;(2)求在区间上的最大值.18.已知(1)若p为真命题,求实数x的取值范围(2)若p为q成立的充分不必要条件,求实数a的取值范围19.某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格(1)求出第4组的频率,并补全频率分布直方图;(2)根据样本频率分布直方图估计样本的中位数与平均数;(3)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?20.已知角的终边与单位圆交于点(1)写出、、值;(2)求的值21.已知向量,满足,,.(1)求向量与夹角;(2)求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】求出的定义域,判断的奇偶性和单调性,进而可得解.【题目详解】的定义域为R,且;∴是奇函数;又和都是R上的增函数;是R上的增函数故选A【题目点拨】本题考查奇偶性的判断,考查了指数函数的单调性,属于基础题2、D【解题分析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.3、B【解题分析】利用对数函数的单调性证明即得解.【题目详解】解:,,所以故选:B4、A【解题分析】的对称轴为,且,然后可得答案.【题目详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A5、A【解题分析】由题目给出的条件可知,圆柱内切球的表面积圆柱表面积的,通过圆柱的体积求出圆柱底面圆半径和高,进而得出表面积,再计算内切球的表面积.【题目详解】设圆柱底面圆半径为,则圆柱高为,圆柱体积,解得,又圆柱内切球的直径与圆柱底面的直径和圆柱的高相等,所以内切球的表面积是圆柱表面积的,圆柱表面积为,所以内切球的表面积为.故选:A.6、B【解题分析】分类讨论:①若a>1,由题意可得:在区间上恒成立,即在区间上恒成立,则,结合反比例函数的单调性可知当时,,此时;②若0<a<1,由题意可得:在区间上恒成立,即,,函数,结合二次函数的性质可知,当时,取得最大值1,此时要求,与矛盾.综上可得:的取值范围是(2,).本题选择B选项.点睛:在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件7、D【解题分析】利用函数的图象变换规律即可得解.【题目详解】解:,只需将函数图象向右平移个单位长度即可故选.【题目点拨】本题主要考查函数图象变换规律,属于基础题8、C【解题分析】将函数y=sin(x-)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(x-),再向左平移个单位得到的解析式为y=sin((x+)-)=y=sin(x-),故选C9、B【解题分析】由余弦函数的二倍角公式把等价转化为,再由诱导公式进一步简化为,由此能求出结果详解】,故选B【题目点拨】本题考查余弦函数的二倍角公式的应用,解题时要认真审题,仔细解答,注意诱导公式的灵活运用,属于基础题.10、D【解题分析】根据诱导公式即可直接求值.【题目详解】因为,所以,又因为,所以,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】结合异面直线所成角的找法,找出角,构造三角形,计算余弦值,即可【题目详解】连接,而,所以直线与所成角即为,设正方体边长为1,则,所以余弦值为【题目点拨】考查了异面直线所成角的计算方法,关键得出直线与所成角即为,难度中等12、【解题分析】本道题目先绘图,然后结合图像判断该直线的位置,计算斜率,建立不等式,即可.【题目详解】要使得与线段AB相交,则该直线介于1与2之间,1号直线的斜率为,2号直线的斜率为,建立不等式关系转化为,所以或解得m范围为【题目点拨】本道题考查了直线与直线的位置关系,结合图像,判断直线的位置,即可.13、【解题分析】当时,函数为减函数,且在区间左端点处有令,解得令,解得的值域为,当时,fx=x在,上单调递增,在上单调递减,从而当时,函数有最小值,即为函数在右端点的函数值为的值域为,则实数的取值范围是点睛:本题主要考查的是分段函数的应用.当时,函数为减函数,且在区间左端点处有,当时,在,上单调递增,在上单调递减,从而当时,函数有最小值,即为,函数在右端点的函数值为,结合图象即可求出答案14、【解题分析】先求的的单调性和值域,然后代入中求得函数的值域.【题目详解】由于为上的增函数,而,,即,对,由于为增函数,故,即函数的值域为,也即.【题目点拨】本小题主要考查函数的单调性,考查函数的值域的求法,考查复合函数值域的求法.属于中档题.15、##0.6【解题分析】寻找角之间的联系,利用诱导公式计算即可【题目详解】故答案为:16、或2【解题分析】分别对两条直线的斜率存在和不存在进行讨论,利用两条直线互相垂直的充要条件,得到关于的方程可求得结果【题目详解】设直线为直线;直线为直线,①当直线率不存在时,即,时,直线的斜率为0,故直线与直线互相垂直,所以时两直线互相垂直②当直线和斜率都存在时,,要使两直线互相垂直,即让两直线的斜率相乘为,故③当直线斜率不存在时,显然两直线不垂直,综上所述:或,故答案为或.【题目点拨】本题主要考查两直线垂直的充要条件,若利用斜率之积等于,应注意斜率不存在的情况,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)2【解题分析】(1)直接由求得的值;(2)由对数的真数大于0求得的定义域,判定在上的增减性,求出在上的最值,即得值域【题目详解】解:(1)∵,∴,∴;(2)由得,∴函数的定义域为,,∴当时,是增函数;当时,是减函数,∴函数在上的最大值是【题目点拨】本题考查了求函数的定义域和值域的问题,利用对数函数的真数大于0可求得定义域,利用函数的单调性可求得值域18、(1)(2)【解题分析】(1)根据命题为真可求不等式的解.(2)根据条件关系可得对应集合的包含关系,从而可求参数的取值范围.【小问1详解】因为p为真命题,故成立,故.【小问2详解】对应的集合为,对应的集合为,因为p为q成立的充分不必要条件,故为的真子集,故(等号不同时取),故.19、(1)第4组的频率为0.2,作图见解析(2)样本中位数的估计值为,平均数为87.25(3)0.9【解题分析】(1)利用频率和为1,计算可得答案,计算可得第四个矩形的高度为0.2÷5=0.04,由此作图即可;(2)设样本的中位数为x,由5×0.01+5×0.07+(x﹣85)×0.06=0.5解出即可得到中位数,根据77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10计算即可得到平均数;(3)通过列举法可得所有基本事件的总数以及至少有一人是“优秀”的总数,再利用古典概型概率公式计算可得.【题目详解】(1)其它组的频率为(0.01+0.07+0.06+0.02)×5=0.8,所以第4组的频率为0.2,频率分布图如图:(2)设样本的中位数为x,则5×0.01+5×0.07+(x﹣85)×0.06=0.5,解得x,∴样本中位数的估计值为,平均数为77.5×0.05+82.5×0.35+87.5×0.30+92.5×0.20+97.5×0.10=87.25;(3)依题意良好的人数为40×0.4=16人,优秀的人数为40×0.6=24人优秀与良好的人数比为3:2,所以采用分层抽样的方法抽取的5人中有优秀3人,良好2人,记“从这5人中选2人至少有1人是优秀”为事件M,将考试成绩优秀的三名学生记为A,B,C,考试成绩良好的两名学生记为a,b,从这5人中任选2人的所有基本事件包括:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,ab共10个基本事件,事件M含的情况是:AB,AC,BC,Aa,Ab,Ba,Bb,Ca,Cb,共9个,所以P(M)0.9【题目点拨】本题考查了频率分布直方图,考查了由频率分布直方图计算中位数和平均数,考查了古典概型的概率公式,属于中档题.20、(1)=;=;=(2)【解题分析】(1)根据已知角的终边与单位圆交于点,结合三角函数的定义即可得到、、的值;(2)依据三角函数的诱导公式化简即可,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Kinetin-riboside-d5-N6-Furfuryladenosine-d-sub-5-sub-生命科学试剂-MCE
- 拆装设备合同范本
- 杂物购销合同范本
- 绥化租房合同范本
- 铁塔安装合同范本
- 2025年血液净化类产品项目合作计划书
- 2025年精密过滤输液器合作协议书
- 设计服务质量控制协议书(2篇)
- 2025年超细粉碎设备(气流磨)项目发展计划
- 2025年主令电器防雷避雷产品项目合作计划书
- 第一章 体育与健康理论知识 课件 2023-2024学年人教版初中体育与健康七年级全一册
- 心脏起搏器植入指南
- 物理学科中的跨学科应用
- 《按频率范围划分》课件
- 专题07 二次函数与几何图形综合问题(复习讲义)(原卷版)-二轮要点归纳与典例解析
- 一年级下册《道德与法治》教案
- 马克思主义理论前沿汇总
- 高中语文统编版(部编版)必修下册第六单元 大单元公开课一等奖创新教学设计
- 初三化学学情分析
- 高中英语北师大版全七册单词表
- 【幼儿园园本教研】幼儿表征的教师一对一倾听策略
评论
0/150
提交评论