河南省新野县一中2024届数学高一上期末调研试题含解析_第1页
河南省新野县一中2024届数学高一上期末调研试题含解析_第2页
河南省新野县一中2024届数学高一上期末调研试题含解析_第3页
河南省新野县一中2024届数学高一上期末调研试题含解析_第4页
河南省新野县一中2024届数学高一上期末调研试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省新野县一中2024届数学高一上期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.直线x+1=0的倾斜角为A.0 B.C. D.2.将函数的图象上各点的横坐标伸长到原来的3倍,再向右平移个单位,得到的函数的一个对称中心()A. B.C. D.3.已知函数,,的图象的3个交点可以构成一个等腰直角三角形,则的最小值为()A. B.C. D.4.将函数的图象向左平移个单位长度,所得图象的函数解析式为A. B.C. D.5.已知全集,集合,则()A. B.C. D.6.已知点,点在轴上且到两点的距离相等,则点的坐标为A.(-3,0,0) B.(0,-3,0)C.(0,0,3) D.(0,0,-3)7.已知实数满足,则函数的零点所在的区间是()A. B.C. D.8.设集合,函数,若,且,则的取值范围是()A. B.(,)C. D.(,1]9.函数f(x)=x2-3x-4的零点是()A. B.C. D.10.已知集合则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知命题:,都有是真命题,则实数取值范围是______12.若正实数满足,则的最大值是________13.已知,,则的值为___________.14.函数的单调递减区间为_______________.15.函数的递减区间是__________.16.已知函数,若关于方程恰好有6个不相等的实数解,则实数的取值范围为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过,,且圆心在直线上(1)求此圆的方程(2)求与直线垂直且与圆相切的直线方程(3)若点为圆上任意点,求的面积的最大值18.已知全集,集合,(1)求,;(2)若,,求实数m的取值范围.19.已知函数为奇函数,且图象的相邻两对称轴间的距离为.(1)求的解析式与单调递减区间;(2)已知在时,求方程的所有根的和.20.已知函数是函数图象的一条对称轴.(1)求的最大值,并写出取得最大值时自变量的取值集合;(2)求在上的单调递增区间.21.已知非空集合,(1)当时,求;(2)若,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】轴垂直的直线倾斜角为.【题目详解】直线垂直于轴,倾斜角为.故选:C【题目点拨】本题考查直线倾斜角,属于基础题.2、A【解题分析】先根据三角函数图象变换规律写出所得函数的解析式,再求出其对称中心,确定选项【题目详解】解:函数的图象上各点的横坐标伸长到原来的3倍得到图象的解析式为再向右平移个单位得到图象的解析式为令,得,所以函数的对称中心为观察选项只有A符合故选A【题目点拨】本题考查了三角函数图象变换规律,三角函数图象、性质.是三角函数中的重点知识,在试题中出现的频率相当高3、C【解题分析】先根据函数值相等求出,可得,由此可知等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,由此可知,可得,据此即可求出结果.【题目详解】令和相等可得,即;此时,即等腰直角三角形的斜边上的高为,所以底边长为,令底边的一个端点为,则另一个端点为,所以,即,当时,的最小值,最小值为故选:C4、A【解题分析】依题意将函数的图象向左平移个单位长度得到:故选5、A【解题分析】首先进行并集运算,然后进行补集运算即可.【题目详解】由题意可得:,则.故选:A.6、D【解题分析】设点,根据点到两点距离相等,列出方程,即可求解.【题目详解】根据题意,可设点,因为点到两点的距离相等,可得,即,解得,所以整理得点的坐标为.故选:D.7、B【解题分析】由已知可得,结合零点存在定理可判断零点所在区间.【题目详解】由已知得,所以,又,,,,所以零点所在区间为,故选:B.8、B【解题分析】按照分段函数先求出,由和解出的取值范围即可.【题目详解】,则,∵,解得,又故选:B.9、D【解题分析】直接利用函数零点定义,解即可.【题目详解】由,解得或,函数零点是.故选:.【题目点拨】本题主要考查的是函数零点的求法,直接利用定义可以求解,是基础题.10、D【解题分析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【题目详解】由解得,所以,又因为,所以,故选:D.【题目点拨】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由于,都有,所以,从而可求出实数的取值范围【题目详解】解:因为命题:,都有是真命题,所以,即,解得,所以实数的取值范围为,故答案为:12、4【解题分析】由基本不等式及正实数、满足,可得的最大值.【题目详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.13、【解题分析】利用和角正弦公式、差角余弦公式及同角商数关系,将目标式化为即可求值.【题目详解】.故答案为:.14、【解题分析】由题得,利用正切函数的单调区间列出不等式,解之即得.【题目详解】由题意可知,则要求函数的单调递减区间只需求的单调递增区间,由得,所以函数的单调递减区间为.故答案为:.15、【解题分析】先求出函数的定义域,再根据复合函数单调性“同增异减”原则求出函数的单调递减区间即可得出答案【题目详解】解:意可知,解得,所以的定义域是,令,对称轴是,在上是增函数,在是减函数,又在定义域上是增函数,是和的复合函数,的单调递减区间是,故答案为:【题目点拨】本题主要考查对数型复合函数的单调区间,属于基础题16、【解题分析】作出函数的简图,换元,结合函数图象可知原方程有6根可化为在区间上有两个不等的实根,列出不等式组求解即可.【题目详解】当,结合“双勾”函数性质可画出函数的简图,如下图,令,则由已知条件知,方程在区间上有两个不等的实根,则,即实数的取值范围为.故答案为:【题目点拨】本题主要考查了分段函数的图象,二次方程根的分布,换元法,数形结合,属于难题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或(3)【解题分析】(1)一般利用待定系数法,先求出圆心的坐标,再求出圆的半径,即得圆的方程.(2)先设出直线的方程,再利用直线和圆相切求出其中的待定系数.(3)一般利用数形结合分析解答.当三角形的高是d+r时,三角形的面积最大.【题目详解】(1)易知中点为,,∴的垂直平分线方程为,即,联立,解得则,∴圆的方程为(2)知该直线斜率为,不妨设该直线方程为,由题意有,解得∴该直线方程为或(3),即,圆心到的距离∴点睛:本题的难点在第(3)问方法的选择,选择数形结合分析解答比较方便.数形结合是高中数学里一种重要的数学思想,在解题中要灵活运用.18、(1),或(2)【解题分析】(1)首先解指数不等式求出集合,再根据交集、并集、补集的定义计算可得;(2)依题意可得,即可得到不等式,解得即可;小问1详解】解:由,即,解得,所以,又,所以,或,所以或;【小问2详解】解:因为,所以,所以,解得,即;19、(1),,(2)【解题分析】(1)将函数变形为,由函数的周期及奇偶性可求解;(2)解方程得或,即或,利用正弦函数的性质可求解.【小问1详解】图象的相邻两对称轴间的距离为,的最小正周期为,即可得,又为奇函数,则,,又,,故的解析式为,令,得函数的递减区间为,.【小问2详解】,,,方程可化为,解得或,即或当时,或或解得或或当时,,所以综上知,在时,方程的所有根的和为20、(1),;,(2)【解题分析】(1)化简得,根据对称轴可得的值,进而根据正弦函数的性质可得最值;(2)根据正弦函数的性质可得在上的单调递增区间【小问1详解】由已知又是函数图象的一条对称轴,所以,得,,即,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论