版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省安达市七中高一数学第一学期期末联考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代十进制的算筹记数法在世界数学史上是一个伟大的创造.据史料推测,算筹最晚出现在春秋晚期或战国初年.算筹记数的方法是:个位、百位、万位、…上的数按纵式的数码摆出;十位、千位、十万位、…上的数按横式的数码摆出,如可用算筹表示为.这个数字的纵式与横式的表示数码如图所示,则的运算结果用算筹表示为()A. B.C. D.2.已知角的顶点与原点重合,它的始边与轴的非负半轴重合,它的终边上一点坐标为,.则为()A. B.C. D.3.根据下表数据,可以判定方程的根所在的区间是()123400.6911.101.3931.51.1010.75A. B.C. D.4.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过x的最大整数,则称为高斯函数例如:,,已知函数,则函数的值域为()A. B.C.1, D.1,2,5.如图是函数的部分图象,则下列说法正确的是()A. B.C. D.6.设集合,则A. B.C. D.7.已知是非零向量且满足,,则与的夹角是()A. B.C. D.8.已知函数f(x)=是奇函数,若f(2m-1)+f(m-2)≥0,则m的取值范围为()A. B.C. D.9.已知点是角终边上一点,则()A. B.C. D.10.设函数,A3 B.6C.9 D.12二、填空题:本大题共6小题,每小题5分,共30分。11.当,,满足时,有恒成立,则实数的取值范围为____________12.新冠疫情防控常态化,核酸检测应检尽检!核酸检测分析是用荧光定量PCR法,通过化学物质的荧光信号,对在PCR扩增进程中成指数级增加的靶标DNA实时检测,在PCR扩增的指数时期,荧光信号强度达到阈值时,DNA的数量与扩增次数n满足:,其中p为扩增效率,为DNA的初始数量.已知某被测标本DNA扩增8次后,数量变为原来的100倍,那么该标本的扩增效率p约为___________;该被测标本DNA扩增13次后,数量变为原来的___________倍.(参考数据:,,,,)13.化简________.14.已知,且,若不等式恒成立,则实数的最大值是__________.15.已知函数的图象恒过定点,若点也在函数的图象上,则_________16.已知,则函数的最大值为___________,最小值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的最小正周期;(2)求的单调递增区间.18.新冠病毒怕什么?怕我们身体的抵抗力和免疫力!适当锻炼,合理休息,能够提高我们身体的免疫力,抵抗各种病毒.某小区为了调查居民的锻炼身体情况,从该小区随机抽取了100为居民,记录了他们某天的平均锻炼时间,其频率分别直方图如下:(1)求图中的值和平均锻炼时间超过40分钟的人数;(2)估计这100位居民锻炼时间的平均数(同一组中的数据用该组区间的中点值代表)和中位数19.已知函数,(1)当时,求的最值;(2)若在区间上是单调函数,求实数a取值范围20.已知为二次函数,且(1)求的表达式;(2)设,其中,m为常数且,求函数的最值21.已知函数(且)的图像经过点.(1)求函数的解析式;(2)若,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】先利用指数和对数运算化简,再利用算筹表示法判断.【题目详解】因为,用算筹记数表示为,故选:.2、D【解题分析】根据正弦函数的定义可得选项.【题目详解】的终边上有一点,,.故选:D.3、B【解题分析】构造函数,通过表格判断,判断零点所在区间,即得结果.【题目详解】设函数,易见函数在上递增,由表可知,,故,由零点存在定理可知,方程的根即函数的零点在区间上.故选:B.4、C【解题分析】由分式函数值域的求法得:,又,所以,由高斯函数定义的理解得:函数的值域为,得解【题目详解】解:因为,所以,又,所以,由高斯函数的定义可得:函数的值域为,故选C【题目点拨】本题考查了分式函数值域的求法及对新定义的理解,属中档题5、A【解题分析】先通过观察图像可得A和周期,根据周期公式可求出,再代入最高点坐标可得.【题目详解】由图像得,,则,,,得,又,.故选:A.6、B【解题分析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.7、B【解题分析】利用向量垂直求得,代入夹角公式即可.【题目详解】设的夹角为;因为,,所以,则,则故选:B【题目点拨】向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.8、B【解题分析】由已知结合f(0)=0求得a=-1,得到函数f(x)在R上为增函数,利用函数单调性化f(2m-1)+f(m-2)≥0为f(2m-1)≥f(-m+2),即2m-1≥-m+2,则答案可求【题目详解】∵函数f(x)=的定义域为R,且是奇函数,,即a=-1,∵2x在(-∞,+∞)上为增函数,∴函数在(-∞,+∞)上为增函数,由f(2m-1)+f(m-2)≥0,得f(2m-1)≥f(-m+2),∴2m-1≥-m+2,可得m≥1∴m的取值范围为m≥1故选B【题目点拨】本题考查函数单调性与奇偶性的应用,考查数学转化思想方法,是中档题9、D【解题分析】利用任意角的三角函数的定义可求得的值,进而可得答案.【题目详解】因为点是角终边上一点,所以,所以.故选:D.10、C【解题分析】.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据基本不等式求得的最小值,由此建立不等式,求解即可.【题目详解】解:,,则,∴,当且仅当,即:时取等号,∴,∴,∴实数的取值范围为故答案为:.12、①.0.778②.1788【解题分析】①对数运算,由某被测标本DNA扩增8次后,数量变为原来的100倍,可以求出p;②由n=13,可以求数量是原来的多少倍.【题目详解】故答案为:①0.778;②1778.13、【解题分析】观察到,故可以考虑直接用辅助角公式进行运算.【题目详解】故答案为:.14、9【解题分析】利用求的最小值即可.【题目详解】,当且仅当a=b=时取等号,不等式恒成立,则m≤9,故m的最大值为9.故答案为:9.15、【解题分析】根据对数过定点可求得,代入构造方程可求得结果.【题目详解】,,,解得:.故答案为:.16、①.②.【解题分析】利用对勾函数的单调性直接计算函数的最大值和最小值作答.【题目详解】因函数在上单调递增,在上单调递减,当时,函数在上单调递增,在上单调递减,即有当时,,而当时,,当时,,则,所以函数的最大值为,最小值为.故答案为:;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),.【解题分析】(1)利用三角恒等变换公式化简f(x),即可求正弦型函数最小正周期;(2)根据正弦函数的单调递增区间即可求复合函数f(x)的单调递增区间.【小问1详解】,∴,即函数的最小正周期为.【小问2详解】令,,解得,,即函数的单调递增区间为,.18、(1),平均锻炼时间超过40分钟的人数为18人(2)100位居民锻炼时间的平均数为分钟,中位数约为分钟【解题分析】(1)由频率和为1,列方程求解出的值,由频率分布直方图求出平均锻炼时间超过40分钟的频率,再由频率乘以100可得结果,(2)利用平均数定义直接求解,由频率分直方图判断出中位数在30-40分钟这一组,然后列方程求解即可【小问1详解】由频率分布直方图可知,解得,由频率分布直方图求出平均锻炼时间超过40分钟的频率为,所以平均锻炼时间超过40分钟的人数为人,【小问2详解】这100位居民锻炼时间的平均数为(分钟),因为,,所以中位数在锻炼时间为30-40分钟这一组,设中位数为,则,解得(分钟)19、(1),.(2)【解题分析】(1)利用二次函数的性质求的最值即可.(2)由区间单调性,结合二次函数的性质:只需保证已知区间在对称轴的一侧,即可求a的取值范围【小问1详解】当时,,∴在上单凋递减,在上单调递增,∴,.【小问2详解】,∴要使在上为单调函数,只需或,解得或∴实数a的取值范围为20、(1)(2);【解题分析】(1)利用待定系数法可求的表达式;(2)利用换元法结合二次函数的单调性可求函数的最值【小问1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版家畜养殖保险产品定制及销售合同3篇
- 2025年度智能门禁系统与消防报警系统联动合同4篇
- 二零二五版跨境电商运营服务战略合作协议3篇
- 2025年度新型门窗及栏杆研发与生产合作协议4篇
- 2025年高端个人财富管理代客理财协议3篇
- 2025年度个人经营性贷款担保保证合同3篇
- 2025版绿色建筑地坪材料供应合同3篇
- 2025年度共享经济门面房租赁与平台建设合同3篇
- 个人汽车购买资助合同2024年模板版B版
- XX市重点蓄水池施工合作合同版
- 2025水利云播五大员考试题库(含答案)
- 中药饮片验收培训
- DB34T 1831-2013 油菜收获与秸秆粉碎机械化联合作业技术规范
- 创伤处理理论知识考核试题及答案
- 税前工资反算表模板
- 2019级水电站动力设备专业三年制人才培养方案
- 肝素诱导的血小板减少症培训课件
- 抖音认证承诺函
- 高等数学(第二版)
- 四合一体系基础知识培训课件
- ICD-9-CM-3手术与操作国家临床版亚目表
评论
0/150
提交评论