云南省曲靖市罗平县一中2024届数学高一上期末达标检测模拟试题含解析_第1页
云南省曲靖市罗平县一中2024届数学高一上期末达标检测模拟试题含解析_第2页
云南省曲靖市罗平县一中2024届数学高一上期末达标检测模拟试题含解析_第3页
云南省曲靖市罗平县一中2024届数学高一上期末达标检测模拟试题含解析_第4页
云南省曲靖市罗平县一中2024届数学高一上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省曲靖市罗平县一中2024届数学高一上期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数(),,则方程在区间上的解的个数是A. B.C. D.2.下列命题正确的是A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行3.“四边形是菱形”是“四边形是平行四边形”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知指数函数在上单调递增,则的值为()A.3 B.2C. D.5.若直线与直线互相垂直,则等于(

)A.1 B.-1C.±1 D.-26.已知集合,则函数的最小值为()A.4 B.2C.-2 D.-47.函数的零点一定位于下列哪个区间().A. B.C. D.8.已知函数是定义在上的偶函数,对任意,都有,当时,,则A. B.C.1 D.9.与直线垂直,且在轴上的截距为-2的直线方程为()A. B.C. D.10.已知函数对任意都有,则等于A.2或0 B.-2或0C.0 D.-2或2二、填空题:本大题共6小题,每小题5分,共30分。11.函数且的图象恒过定点__________.12.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).13.由于德国著名数学家狄利克雷对数论、数学分析和物理学的突出贡献,人们将函数命名狄利克雷函数,已知函数,下列说法中:①函数的定义域和值域都是;②函数是奇函数;③函数是周期函数;④函数在区间上是单调函数.正确结论是__________14.已知向量,,则向量在方向上的投影为___________.15.若函数是幂函数,则函数(其中,)的图象过定点的坐标为__________16.已知某扇形的周长是,面积为,则该扇形的圆心角的弧度数是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知全集,,集合(1)求;(2)求18.已知函数.(Ⅰ)对任意的实数,恒有成立,求实数的取值范围;(Ⅱ)在(Ⅰ)的条件下,当实数取最小值时,讨论函数在时的零点个数.19.(1)化简:;(2)已知,求的值.20.设全集,集合(1)求;(2)若集合满足,求实数的取值范围.21.已知n为正整数,集合Mn=x1,x2,⋅⋅⋅,xnx(1)当n=3时,设α=0,1,0,β=1,0,0,写出α-(2)若集合S满足S⊆M3,且∀α,β∈S,dα,β=2,求集合(3)若α,β∈Mn,且dα,β=2,任取γ∈

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由题意得,方程在区间上的解的个数即函数与函数的图像在区间上的交点个数在同一坐标系内画出两个函数图像,注意当时,恒成立,易得交点个数为.选A点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.但在应用图象解题时要注意两个函数图象在同一坐标系内的相对位置,要做到观察仔细,避免出错2、C【解题分析】若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.3、A【解题分析】由菱形和平行四边形的定义可判断.【题目详解】解:四边形是菱形则四边形是平行四边形,反之,若四边形是平行四边形则四边形不一定是菱形,所以“四边形是菱形”是“四边形是平行四边形”充分不必要条件.故选:A.4、B【解题分析】令系数为,解出的值,又函数在上单调递增,可得答案【题目详解】解得,又函数在上单调递增,则,故选:B5、C【解题分析】分类讨论:两条直线的斜率存在与不存在两种情况,再利用相互垂直的直线斜率之间的关系即可【题目详解】解:①当时,利用直线方程分别化为:,,此时两条直线相互垂直②如果,两条直线的方程分别为与,不垂直,故;③,当时,此两条直线的斜率分别为,两条直线相互垂直,,化为,综上可知:故选【题目点拨】本题考查了相互垂直的直线斜率之间的关系、分类讨论思想方法,属于基础题6、D【解题分析】因为集合,所以,设,则,所以,且对称轴为,所以最小值为,故选D7、C【解题分析】根据零点存在性定理可得结果.【题目详解】因为函数的图象连续不断,且,,,,根据零点存在性定理可知函数的零点一定位于区间内.故选:C【题目点拨】关键点点睛:掌握零点存在性定理是解题关键.8、C【解题分析】由题意,故选C9、A【解题分析】先求出直线的斜率,再利用直线的点斜式方程求解.【题目详解】由题得所求直线的斜率为,∴所求直线方程为,整理为故选:A【题目点拨】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).10、D【解题分析】分析:由条件可得,函数f(x)的图象关于直线x=对称,故f()等于函数的最值,从而得出结论详解:由题意可得,函数f(x)的图象关于直线x=对称,故f()=±2,故答案为±2点睛:本题考查了函数f(x)=Asin(ωx+φ)的图象与性质的应用问题,是基础题目.一般函数的对称轴为a,函数的对称中心为(a,0).二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】令真数为,求出的值,再代入函数解析式,即可得出函数的图象所过定点的坐标.【题目详解】令,得,且.函数的图象过定点.故答案为:.12、(1)(4)(5)【解题分析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【题目详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【题目点拨】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.13、①【解题分析】由题意知,所以①正确;根据奇函数的定义,x是无理数时,显然不成立,故②错误;当x是有理数时,显然不符合周期函数的定义故③错误;函数在区间上是既不是增函数也不是减函数,故④错误;综上填①.14、【解题分析】直接利用投影的定义求在方向上的投影.【题目详解】因为,,设与夹角为,,则向量在方向上的投影为:.所以在方向上投影为故答案为:.15、(3,0)【解题分析】若函数是幂函数,则,则函数(其中,),令,计算得出:,,其图象过定点的坐标为16、2【解题分析】由扇形的周长和面积,可求出扇形的半径及弧长,进而可求出该扇形的圆心角.【题目详解】设扇形的半径为,所对弧长为,则有,解得,故.故答案为:2.【题目点拨】本题考查扇形面积公式、弧长公式的应用,考查学生的计算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据集合的并运算,结合已知条件,即可求得结果;(2)先求,再求交集即可.【小问1详解】全集,,集合,故.【小问2详解】集合,故或,故.18、(Ⅰ);(Ⅱ)见解析.【解题分析】(Ⅰ)由可知,区间是不等式解集的子集,由此可得出实数的不等式,解出即可;(Ⅱ)由题意可知,,则,令,可得出,令,对实数的取值范围进行分类讨论,先讨论方程的根的个数及根的范围,进而得出方程的根个数,由此可得出结论.【题目详解】(Ⅰ),,对任意的实数,恒有成立,则区间是不等式解集的子集,,解得,因此,实数的取值范围是;(Ⅱ),由题意可知,,,令,得,令,则,作出函数和函数在时的图象如下图所示:作出函数在时的图象如下图所示:①当或时,即当或时,方程无实根,此时,函数无零点;②当时,即当时,方程根为,而方程在区间上有两个实根,此时,函数有两个零点;③当时,即当时,方程有两根、,且,,方程在区间上有两个实根,方程在区间上有两个实根,此时,函数有四个零点;④当时,即当时,方程有两根分别为、,方程在区间上只有一个实根,方程在区间上有两个实根,此时,函数有三个零点;⑤当时,即当时,方程只有一个实根,且,方程在区间上有两个实根,此时,函数有两个零点;⑥当时,即当时,方程只有一个实根,方程在区间上只有一个实根,此时,函数只有一个零点.综上所述,当或时,函数无零点;当时,函数只有一个零点;当或时,函数有两个零点;当时,函数有三个零点;当时,函数有四个零点.【题目点拨】本题考查利用二次不等式求参数,同时也考查了复合型二次函数的零点个数的分类讨论,解题时要将函数分解为内层函数和外层函数来分析,考查数形结合思想与分类讨论思想的应用,属于难题.19、(1)-1(2)-3【解题分析】(1)根号下是,开方后注意,而,从而所求值为.(2)利用诱导公式原式可以化简为,再分子分母同时除以,就可以得到一个关于的分式,代入其值就可以得到所求值为.解析:(1).(2).20、(1)或(2)【解题分析】(1)化简集合,利用交集的定义求解,再利用补集的定义求解;(2)化简集合,由,得,列不等式求解.【小问1详解】化简,,所以或.【小问2详解】,因为,所以,所以,所以实数的取值范围为21、(1)α-β=1,1,0(2)最大值是4,此时S=0,0,0,(3)2【解题分析】(1)根据定义直接求解即可;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论