




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届新课标全国卷高一上数学期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.化简A. B.C.1 D.2.已知点,点在轴上且到两点的距离相等,则点的坐标为A.(-3,0,0) B.(0,-3,0)C.(0,0,3) D.(0,0,-3)3.已知函数,若方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则的取值范围为()A.(﹣1,+∞) B.(﹣1,1]C.(﹣∞,1) D.[﹣1,1)4.铁路总公司关于乘车行李规定如下:乘坐动车组列车携带品的外部尺寸长、宽、高之和不超过.设携带品外部尺寸长、宽、高分别为(单位:),这个规定用数学关系式表示为()A. B.C. D.5.已知,则直线通过()象限A.第一、二、三 B.第一、二、四C.第一、三、四 D.第二、三、四6.设,若直线与直线平行,则的值为A. B.C.或 D.或7.函数的部分图象大致是()A. B.C. D.8.若函数的三个零点分别是,且,则()A. B.C. D.9.设,则下列不等式中不成立的是()A. B.C. D.10.已知函数f(x)=Acos(ωx+φ)的图像如图所示,,则f(0)=()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.下图是某机械零件的几何结构,该几何体是由两个相同的直四棱柱组合而成的,且前后,左右、上下均对称,每个四棱柱的底面都是边长为2的正方形,高为4,且两个四棱柱的侧棱互相垂直.则这个几何体的体积为________.12.设函数,且;(1)若,求的最小值;(2)若在上能成立,求实数的取值范围13.终边上一点坐标为,的终边逆时针旋转与的终边重合,则______.14.已知某扇形的弧长为,面积为,则该扇形的圆心角(正角)为_________.15.计算____________16.如果二次函数在区间上是增函数,则实数的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,(Ⅰ)求的最小正周期及单调递增区间;(Ⅱ)求在区间上的最大值和最小值18.已知定义域为的函数是奇函数.(1)求实数的值;(2)判断的单调性并用定义证明;(3)已知不等式恒成立,求实数的取值范围.19.已知二次函数的图象与轴、轴共有三个交点.(1)求经过这三个交点的圆的标准方程;(2)当直线与圆相切时,求实数的值;(3)若直线与圆交于两点,且,求此时实数的值.20.已知,(1)若,求(2)若,求实数的取值范围.21.如图,某园林单位准备绿化一块直径为的半圆形空,外的地方种草,的内接正方形为一水池,其余的地方种花,若,,,设的面积为,正方形的面积为(1)用表示和;(2)当变化时,求的最小值及此时角的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】先考虑分母化简,利用降次公式,正切的两角和与差公式打开,整理,可得答案【题目详解】化简分母得.故原式等于.故选D【题目点拨】本题主要考查了两角和与差公式以及倍角公式.属于基础题2、D【解题分析】设点,根据点到两点距离相等,列出方程,即可求解.【题目详解】根据题意,可设点,因为点到两点的距离相等,可得,即,解得,所以整理得点的坐标为.故选:D.3、B【解题分析】由方程f(x)=a,得到x1,x2关于x=﹣1对称,且x3x4=1;化简,利用数形结合进行求解即可【题目详解】作函数f(x)的图象如图所示,∵方程f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,∴x1,x2关于x=﹣1对称,即x1+x2=﹣2,0<x3<1<x4,则|log2x3|=|log2x4|,即﹣log2x3=log2x4,则log2x3+log2x4=0,即log2x3x4=0,则x3x4=1;当|log2x|=1得x=2或,则1<x4≤2;≤x3<1;故;则函数y=﹣2x3+,在≤x3<1上为减函数,则故当x3=取得y取最大值y=1,当x3=1时,函数值y=﹣1.即函数取值范围(﹣1,1]故选B【题目点拨】本题考查分段函数的运用,主要考查函数的单调性的运用,运用数形结合的思想方法是解题的关键,属于中档题4、C【解题分析】根据长、宽、高的和不超过可直接得到关系式.【题目详解】长、宽、高之和不超过,.故选:.5、A【解题分析】根据判断、、的正负号,即可判断直线通过的象限【题目详解】因为,所以,①若则,,直线通过第一、二、三象限②若则,,直线通过第一、二、三象限【题目点拨】本题考查直线,作为选择题6、B【解题分析】由a(a+1)﹣2=0,解得a.经过验证即可得出【题目详解】由a(a+1)﹣2=0,解得a=﹣2或1经过验证:a=﹣2时两条直线重合,舍去∴a=1故选B【题目点拨】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题7、A【解题分析】分析函数的奇偶性及其在上的函数值符号,结合排除法可得出合适的选项.【题目详解】函数的定义域为,,函数为偶函数,排除BD选项,当时,,则,排除C选项.故选:A.8、D【解题分析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【题目详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【题目点拨】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理9、B【解题分析】对于A,C,D利用不等式的性质分析即可,对于B举反例即可【题目详解】对于A,因为,所以,所以,即,所以A成立;对于B,若,,则,,此时,所以B不成立;对于C,因为,所以,所以C成立;对于D,因为,所以,则,所以D成立,故选:B.【题目点拨】本题考查不等式的性质的应用,属于基础题.10、C【解题分析】根据所给图象求出函数的解析式,即可求出.【题目详解】设函数的周期为,由图像可知,则,故ω=3,将代入解析式得,则,所以,令,代入解析式得,又因为,解得,,.故选:C.【题目点拨】本题考查根据三角函数的部分图象求函数的解析式,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】该几何体体积等于两个四棱柱的体积和减去两个四棱柱交叉部分的体积,根据直观图分别进行求解即可.【题目详解】该几何体的直观图如图所示,该几何体的体积为两个四棱柱的体积和减去两个四棱柱交叉部分的体积.两个四棱柱的体积和为.交叉部分的体积为四棱锥的体积的2倍.在等腰中,边上的高为2,则由该几何体前后,左右上下均对称,知四边形为边长为的菱形.设的中点为,连接易证即为四棱锥的高,在中,又所以因为,所以,所以求体积为故答案为:【题目点拨】本题考查空间组合体的结构特征.关键点弄清楚几何体的组成,属于较易题目.12、(1)3(2)或【解题分析】(1)由可得,再利用基本不等式中乘“1”法的应用计算可得;(2)将已知转化为不等式有解,再对参数分类讨论,分别计算可得.【小问1详解】函数,由,可得,所以,当时等号成立,又,,,解得时等号成立,所以的最小值是3.【小问2详解】由题知,在上能成立,即能成立,即不等式有解①当时,不等式的解集为,满足题意;②当时,二次函数开口向下,必存在解,满足题意;③当时,需,解得或综上,实数的取值范围是或13、【解题分析】由题知,进而根据计算即可.【题目详解】解:因为终边上一点坐标为,所以,因为的终边逆时针旋转与的终边重合,所以故答案为:14、【解题分析】根据给定条件求出扇形所在圆的半径即可计算作答.【题目详解】设扇形所在圆的半径为,扇形弧长为,即,由扇形面积得:,解得,所以该扇形的圆心角(正角)为.故答案为:15、5【解题分析】由分数指数幂的运算及对数的运算即可得解.【题目详解】解:原式,故答案为:5.【题目点拨】本题考查了分数指数幂的运算及对数的运算,属基础题.16、【解题分析】函数对称轴为,则由题意可得,解出不等式即可.【题目详解】∵函数的对称轴为且在区间上是增函数,∴,即.【题目点拨】已知函数在某个区间上的单调性,则这个区间是这个函数对应单调区间的子集.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)最小正周期是,单调递增区间是.(Ⅱ)最大值为,最小值为【解题分析】详解】试题分析:(Ⅰ)将函数解析式化为,可得最小正周期为;将代入正弦函数的增区间可得函数的单调递增区间是.(Ⅱ)由可得,故,从而可得函数在区间上的最大值为,最小值为试题解析:(Ⅰ),所以函数的最小正周期是,由,得,所以的单调递增区间是.(Ⅱ)当时,,所以,所以,所以在区间上的最大值为,最小值为点睛:解决三角函数综合题(1)将f(x)化为的形式;(2)构造;(3)逆用和(差)角公式得到(其中φ为辅助角);(4)利用,将看做一个整体,并结合函数的有关知识研究三角函数的性质18、(1);(2)减函数,证明见解析;(3).【解题分析】(1)根据可求的值,注意检验.(2)利用增函数的定义可证明在上是减函数.(3)利用函数的奇偶性和单调性可把原不等式化为,利用对数函数的性质可求的取值范围.【题目详解】(1)是上的奇函数,,得,此时,,故为奇函数,所以.(2)为减函数,证明如下:设是上任意两个实数,且,,,,即,,,,即,在上是减函数.(3)不等式恒成立,.是奇函数,,即不等式恒成立又在上是减函数,不等式恒成立,当时,得,.当时,得,.综上,实数的取值范围是.【题目点拨】本题考查了函数的奇偶性与单调性,考查了不等式恒成立问题,考查了应用对数函数单调性解与对数有关的不等式,涉及了指数函数与对数函数的图象与性质,体现了转化思想在解题中的运用.19、(1);(2)或;(3)【解题分析】(1)先求出二次函数的图象与坐标轴的三个交点的坐标,然后根据待定系数法求解可得圆的标准方程;(2)根据圆心到直线的距离等于半径可得实数的值;(3)结合弦长公式可得所求实数的值【题目详解】(1)在中,令,可得;令,可得或所以三个交点分别为,,,设圆的方程为,将三个点的坐标代入上式得,解得,所以圆的方程为,化为标准方程为:(2)由(1)知圆心,因为直线与圆相切,所以,解得或,所以实数的值为或(3)由题意得圆心到直线的距离,又,所以,则,解得所以实数的值为或【题目点拨】(1)求圆的方程时常用的方法有两种:一是几何法,即求出圆的圆心和半径即可得到圆的方程;二是用待定系数法,即通过代数法求出圆的方程(2)解决圆的有关问题时,要注意圆的几何性质的应用,合理利用圆的有关性质进行求解,可以简化运算、提高解题的效率20、(1);(2)【解题分析】(1)先化简集合A和集合B,再求.(2)由A得再因为得到,即得.【题目详解】(1)当时,有得,由知得或,故.(2)由知得,因为,所以,得.【题目点拨】本题主要考查集合的化简运算,考查集合中的参数问题,考查绝对值不等式和对数不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 财务管理资金运作分析试题及答案在2025年
- 2025年儿童青少年心理健康考试题及答案
- 海安融信面试题库及答案
- 基础医学知识试题库
- 知识经济与公共政策关系试题及答案
- 软件设计师考试反馈与试题及答案总结
- 软考网络工程师试题及答案全媒体传播2025年
- 机电工程2025年成功案例试题及答案
- 前端与后端结合的2025年软件设计师试题及答案
- 网络工程师复习计划及试题及答案
- 房产抵押合同模板格式
- 第18课《中国人失掉自信力了吗》课件-2024-2025学年统编版语文九年级上册
- 人教版中考物理一轮大单元复习第二单元声现象【中考演练】(原卷版+解析)
- 深圳小孩上学租房合同
- 接地电阻、绝缘电阻和漏电保护器漏电动作参数测定记录表
- 2024-2025学年高中物理1.1质点参考系教学设计新人教版必修第一册
- 高原湿地- 三江源地区说课课件-2023-2024学年人教版地理八年级下册
- SH/T 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范(正式版)
- (高清版)JTGT D31-06-2017 季节性冻土地区公路设计与施工技术规范
- 机房搬迁服务搬迁实施方案
- DLT电力建设施工及验收技术规范锅炉机组篇
评论
0/150
提交评论