




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省盘锦市大洼区高级中学2024届数学高一上期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数fx=x+a,x≤0,x2,x>0,那么“a=0”是A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.函数的图像的一个对称中心是A. B.C. D.3.函数的零点所在区间是()A B.C. D.4.若,则的最小值为()A.4 B.3C.2 D.15.若a>b>1,0<c<1,则下列式子中不正确的是()A. B.C. D.6.如图,直角梯形ABCD中,A=90°,B=45°,底边AB=5,高AD=3,点E由B沿折线BCD向点D移动,EMAB于M,ENAD于N,设BM=,矩形AMEN的面积为,那么与的函数关系的图像大致是()A. B.C. D.7.已知角的终边过点,则()A. B.C. D.8.已知函数满足,则()A. B.C. D.9.已知集合,且,则的值可能为()A B.C.0 D.110.若函数是定义域为的奇函数,且当时,,则当时,()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式的解集是__________12.已知函数是定义在上的奇函数,且,则________,________.13.设x、y满足约束条件,则的最小值是________.14.计算:__________.15.在中,,,且在上,则线段的长为______16.函数的单调递减区间为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,且求实数m的值;作出函数的图象并直接写出单调减区间若不等式在时都成立,求t的取值范围18.已知在第一象限,若,,,求:(1)边所在直线的方程;19.已知集合(1)当时,求;(2)若“”是“”充分条件,求实数a的取值范围20.(1)计算:.(2)若,求的值.21.已知函数.(1)求的单调递增区间;(2)设,已知,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用充分条件和必要条件的定义判断.【题目详解】当a=0时,fx=x,x≤0当函数fx是增函数时,则a≤0故选:A2、C【解题分析】令,得,所以函数的图像的对称中心是,然后赋值即可【题目详解】因为的图像的对称中心为.由,得,所以函数的图像的对称中心是.令,得.【题目点拨】本题主要考查正切函数的对称性,属基础题3、C【解题分析】利用零点存在定理可得出结论.【题目详解】函数在上单调递增,因为,,,,所以,函数的零点所在区间是.故选:C.4、D【解题分析】利用“乘1法”即得.【题目详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.5、D【解题分析】利用对数函数、指数函数与幂函数的单调性即可判断出正误.【题目详解】解:,,,A正确;是减函数,,B正确;为增函数,,C正确.是减函数,,D错误.故选.【题目点拨】本题考查了对数函数、指数函数与幂函数的单调性,考查了推理能力与计算能力,属于基础题.6、A【解题分析】根据已知可得:点E在未到达C之前,y=x(5-x)=5x-x2;且x≤3,当x从0变化到2.5时,y逐渐变大,当x=2.5时,y有最大值,当x从2.5变化到3时,y逐渐变小,到达C之后,y=3(5-x)=15-3x,x>3,根据二次函数和一次函数的性质.故选A.考点:动点问题的函数图象;二次函数的图象.7、A【解题分析】根据三角函数的定义计算可得;【题目详解】解:因为角终边过点,所以;故选:A8、D【解题分析】由已知可得出,利用弦化切可得出关于的方程,结合可求得的值.【题目详解】因为,且,则,,可得,解得.故选:D9、C【解题分析】化简集合得范围,结合判断四个选项即可.【题目详解】集合,四个选项中,只有,故选:C【题目点拨】本题考查元素与集合的关系,属于基础题10、D【解题分析】设,由奇函数的定义可得出,即可得解.【题目详解】当时,,由奇函数的定义可得.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据对数不等式解法和对数函数的定义域得到关于的不等式组,解不等式组可得所求的解集【题目详解】原不等式等价于,所以,解得,所以原不等式的解集为故答案为【题目点拨】解答本题时根据对数函数的单调性得到关于的不等式组即可,解题中容易出现的错误是忽视函数定义域,考查对数函数单调性的应用及对数的定义,属于基础题12、①.1②.0【解题分析】根据函数的周期性和奇偶性,结合已知条件,代值计算即可.【题目详解】因为满足,且,且其为奇函数,故;又,故可得,又函数是定义在上的奇函数,故,又,故.故答案为:1;0.13、-6【解题分析】先根据约束条件画出可行域,再利用的几何意义求最值,只需求出直线过可行域内的点时,从而得到的最小值即可【题目详解】解:由得,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线,由图象可知当直线,过点A时,直线截距最大,此时z最小,由得,即,代入目标函数,得∴目标函数的最小值是﹣6故答案为:【题目点拨】本题考查简单线性规划问题,属中档题14、4【解题分析】故答案为415、1【解题分析】∵,∴,∴,∵且在上,∴线段为的角平分线,∴,以A为原点,如图建立平面直角坐标系,则,D∴故答案为116、【解题分析】利用对数型复合函数性质求解即可.【题目详解】由题知:,解得或.令,则为减函数.所以,为减函数,为增函数,,为增函数,为减函数.所以函数的单调递减区间为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)详见解析,单调减区间为:;(3)【解题分析】由,代入可得m值;分类讨论,去绝对值符号后根据二次函数表达式,画出图象由题意得在时都成立,可得在时都成立,解得即可【题目详解】解:,由得即解得:;由得,即则函数的图象如图所示;单调减区间为:;由题意得在时都成立,即在时都成立,即在时都成立,在时,,【题目点拨】本题考查的知识点是函数解析式的求法,零点分段法,分段函数,由图象分析函数的值域,其中利用零点分段法,求函数的解析式是解答的关键18、(1);(2)或.【解题分析】(1)直接写出直线方程得解;(2)求出直线的斜率即得解.小问1详解】解:因为,,所以直线所在直线方程为.【小问2详解】解:当点在直线上方时,由题得直线的斜率为,所以边所在直线点斜式方程为;当点在直线下方时,由题得直线的斜率为,所以边所在直线的点斜式方程为.综合得直线的方程为或.19、(1);(2)或.【解题分析】(1)解一元二次不等式化简集合B,把代入,利用补集、交集的定义直接计算作答.(2)由给定条件可得,再借助集合的包含关系列式计算作答.【小问1详解】当时,,解不等式得:或,则或,有,所以.【小问2详解】由(1)知,或,因“”是“”的充分条件,则,显然,,因此,或,解得或,所以实数a取值范围是或.20、(1);(2)【解题分析】(1)根据指数幂运算、对数加法运算以及三角函数的诱导公式一,化简即可求出结果;(2)利用诱导公式和同角的基本关系,对原式化简,可得,再将代入,即可求出结果.【题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软件设计师考试高效复习笔记及试题答案
- 计算机技术在政策评估中的应用潜能试题及答案
- 化妆师考试试题、答案
- 社会公正与经济政策的关系试题及答案
- 流动机械基础试题及答案
- 软件设计趋势与试题及答案的变化
- 软件设计师考试优劣势分析试题及答案
- 网络信息安全等级测评试题及答案
- 如何通过数字技术提升政策实施效率试题及答案
- 公共政策中的性别视角试题及答案
- GB 5009.96-2016食品安全国家标准食品中赭曲霉毒素A的测定
- 通用绿色简约小清新PPT模板
- 排序算法及其算法分析课件
- 吸烟对人体危害和戒烟
- 子宫内膜增生课件
- 建筑施工安全技术统一规范
- 天津市新版就业、劳动合同登记名册
- 建设工程施工安全技术操作规程完整
- 送医护人员锦旗用语16字
- 装配作业指导书
- 学校内控制度及手册
评论
0/150
提交评论