




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昭通市大关县一中2024届高一数学第一学期期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知中,,,点M是线段BC(含端点)上的一点,且,则的取值范围是()A. B.C. D.2.函数,则f(log23)=()A.3 B.6C.12 D.243.在中,若,则的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形4.设,则a,b,c的大小关系是()A. B.C. D.5.的值为()A. B.C. D.6.若将函数的图象向左平移个单位长度,则平移后图象的对称轴为()A. B.C. D.7.由直线上的点向圆引切线,则切线长的最小值为A. B.C. D.8.下列函数中,既是奇函数又在上有零点的是A. B.C D.9.已知点(a,2)在幂函数的图象上,则函数f(x)的解析式是()A. B.C. D.10.命题任意圆的内接四边形是矩形,则为()A.每一个圆的内接四边形是矩形B.有的圆的内接四边形不是矩形C.所有圆的内接四边形不是矩形D.存在一个圆内接四边形是矩形二、填空题:本大题共6小题,每小题5分,共30分。11.直线被圆截得弦长的最小值为______.12.函数f(x)=log2(x2-5),则f(3)=______13.《三十六计》是中国古代兵法策略,是中国文化的瑰宝.“分离参数法”就是《三十六计》中的“调虎离山”之计在数学上的应用,例如,已知含参数的方程有解的问题,我们可分离出参数(调),将方程化为,根据的值域,求出的范围,继而求出的取值范围,已知,若关于x的方程有解,则实数的取值范围为___________.14.已知,则的最小值为___________15.半径为2cm,圆心角为的扇形面积为.16.若函数满足,且时,,已知函数,则函数在区间内的零点的个数为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点为圆心的两个同心圆弧和延长后通过点,的两条线段围成.设圆弧和圆弧所在圆的半径分别为米,圆心角为θ(弧度)(1)若,,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD的长度为多少时,花坛的面积最大?18.已知函数(1)若是偶函数,求a值;(2)若对任意,不等式恒成立,求a的取值范围19.已知函数,.(1)解方程;(2)判断在上的单调性,并用定义加以证明;(3)若不等式对恒成立,求的取值范围.20.计算(1)-(2)21.某国际性会议纪念章的一特许专营店销售纪念章,每枚进价为5元,同时每销售一枚这种纪念章还需向该会议的组织委员会交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时,该店一年可销售2000枚,经过市场调研发现,每枚纪念章的销售价格在每枚20元的基础上,每减少一元则增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元(每枚的销售价格应为正整数).(1)写出该特许专营店一年内销售这种纪念章所获得的利润(元)与每枚纪念章的销售价格的函数关系式;(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出这个最大值;
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】如图所示,建立直角坐标系,则,,,.利用向量的坐标运算可得.再利用数量积运算,可得.利用数量积性质可得,可得.再利用,,可得,即可得出【题目详解】如图所示,建立直角坐标系则,,,,,及四边形为矩形,,,.即点在直线上,,,,,,即(当且仅当或时取等号),综上可得:故选:【题目点拨】本题考查了向量的坐标运算、数量积运算及其性质、不等式的性质等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题2、B【解题分析】由对数函数的性质可得,再代入分段函数解析式运算即可得解.【题目详解】由题意,,所以.故选:B.3、D【解题分析】利用诱导公式和两角和差的正弦公式、正弦的二倍角公式化简已知条件,再结合角的范围即可求解.【题目详解】因为,由可得:,即,所以,所以,所以或,因为,,所以或,所以的形状为等腰三角形或直角三角形,故选:D.4、C【解题分析】比较a、b、c与0和1的大小即可判断它们之间的大小.【题目详解】,,,故故选:C.5、B【解题分析】由诱导公式可得,故选B.6、C【解题分析】由题意得,将函数的图象向左平移个单位长度,得到,由,得,即平移后的函数的对称轴方程为,故选C7、B【解题分析】过圆心作直线的垂线,垂线与直线的交点向圆引切线,切线长最小【题目详解】圆心,半径,圆心到直线的距离则切线长的最小值【题目点拨】本题考查圆的切线长,考查数形结合思想,属于基础题8、D【解题分析】选项中的函数均为奇函数,其中函数与函数在上没有零点,所以选项不合题意,中函数为偶函数,不合题意;中函数的一个零点为,符合题意,故选D.9、A【解题分析】由幂函数的定义解出a,再把点代入解出b.【题目详解】∵函数是幂函数,∴,即,∴点(4,2)在幂函数的图象上,∴,故故选:A.10、B【解题分析】全称命题的否定特称命题,任意改为存在,把结论否定.【题目详解】全称量词命题的否定是特称命题,需要将全称量词换为存在量词,答案A,C不符合题意,同时对结论进行否定,所以:有的圆的内接四边形不是矩形,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先求直线所过定点,根据几何关系求解【题目详解】,由解得所以直线过定点A(1,1),圆心C(0,0),由几何关系知当AC与直线垂直时弦长最小.弦长最小值为.故答案为:12、2【解题分析】利用对数性质及运算法则直接求解【题目详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【题目点拨】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题13、【解题分析】参变分离可得,令,构造函数,利用导数求解函数单调性,分析可得的值域为,即得解【题目详解】由题意,,故又,,令故,令,故在单调递增由于时故的值域为故,即实数的取值范围为故答案为:14、【解题分析】根据基本不等式,结合代数式的恒等变形进行求解即可.【题目详解】解:因为a>0,b>0,且4a+b=2,所以有:,当且仅当时取等号,即时取等号,故答案为:.15、【解题分析】求出扇形的弧长,利用扇形面积公式求解即可.【题目详解】因为半径为,圆心角为的扇形,弧长为,所以扇形面积为:故答案为.【题目点拨】本题考查扇形的面积公式的应用,考查计算能力,属于基础题.16、10【解题分析】根据,可得函数是以2为周期的周期函数,函数在区间内的零点的个数即为函数交点的个数,作出两个函数的图像,结合图像即可得出答案.【题目详解】解:因为,所以,所以函数是以2为周期的周期函数,令,则,在同一平面直角坐标系中作出函数的图像,如图所示,由图可知函数有10个交点,所以函数在区间内的零点有10个.故答案为:10.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)当线段的长为5米时,花坛的面积最大.【解题分析】(1)根据扇形的面积公式,求出两个扇形面积之差就是所求花坛的面积即可;(2)利用弧长公式根据预算费用总计1200元可得到等式,再求出花坛的面积的表达式,结合得到的等式,通过配方法可以求出面积最大时,线段AD的长度.【题目详解】(1)设花坛面积为S平方米.答:花坛的面积为;(2)圆弧长为米,圆弧的长为米,线段的长为米由题意知,即*,,由*式知,,记则所以=当时,取得最大值,即时,花坛的面积最大,答:当线段的长为5米时,花坛的面积最大.【题目点拨】本题考查了弧长公式和扇形面积公式,考查了数学阅读能力,考查了数学运算能力.18、(1)0(2)【解题分析】(1)由偶函数的定义得出a的值;(2)由分离参数得,利用换元法得出的最小值,即可得出a的取值范围【小问1详解】因为是偶函数,所以,即,故【小问2详解】由题意知在上恒成立,则,又因为,所以,则.令,则,可得,又因为,当且仅当时,等号成立,所以,即a的取值范围是19、(1)或(2)在上单调递减,在上单调递增,证明见解析(3)【解题分析】(1)由已知得,解方程即可;(2)任取,且,则,分和讨论可得答案;(3)将不等式对恒成立问题转化为,的最小值问题,求出的最小值即可得的取值范围.【题目详解】(1)由已知.所以,得或,所以或;(2)任取,且,则因为,且,所以,.当时,恒成立,,即;当时,恒成立,,即.故在上单调递减,在上单调递增;(3),,令,.由(2)知,在上单调递减,在上单调递增,所以,所以,即,故的取值范围是.【题目点拨】本题考查函数单调性的判断和证明,考查函数不等式恒成立问题,转化为最值问题即可,是中档题.20、(1);(2).【解题分析】(1)综合利用指数对数运算法则运算;(2)利用对数的运算法则化简运算.【题目详解】解:(1)原式;(2)原式【题目点拨】本题考查指数对数的运算,属基础题,在指数运算中,往往先将幂化为指数幂,然后利用指数幂的运算法则化简;在对数的运算中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国高压电缆配件行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国髋关节重建装置行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国马铃薯行业供需趋势及投资风险研究报告
- 2025-2030中国饰品行业供需趋势及投资风险研究报告
- 2025-2030中国食品和饮料咖啡因行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国飞钓渔线轮行业市场发展趋势与前景展望战略分析研究报告
- 2025-2030中国飞机睡衣行业市场现状供需分析及投资评估规划分析研究报告
- 2025招标工作总结(23篇)
- 2025-2030中国韩国润肤剂行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国鞘脂行业市场发展趋势与前景展望战略研究报告
- 开关柜防凝露施工方案
- 新质生产力:学术研究与前沿探索
- 5.1 人民代表大会:我国的国家权力机关 课件高中政治统编版必修三政治与法治
- 邢台2025年河北邢台市高层次人才引进1025人笔试历年参考题库附带答案详解
- 2025年统计学 1试题及答案
- 2025年起重工(技师)职业技能鉴定理论考试题库(含答案)
- (二调)武汉市2025届高中毕业生二月调研考试 政治试卷(含标准答案)
- 2025年电梯修理T证试题(附答案)
- 第1课认识机器人(课件)小学信息技术六年级同步教学
- 道闸终止合同范例
- 《课堂管理方法与技巧》课件
评论
0/150
提交评论