内蒙古阿荣旗第一中学2024届数学高一上期末经典模拟试题含解析_第1页
内蒙古阿荣旗第一中学2024届数学高一上期末经典模拟试题含解析_第2页
内蒙古阿荣旗第一中学2024届数学高一上期末经典模拟试题含解析_第3页
内蒙古阿荣旗第一中学2024届数学高一上期末经典模拟试题含解析_第4页
内蒙古阿荣旗第一中学2024届数学高一上期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古阿荣旗第一中学2024届数学高一上期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆O1:x2+y2﹣6x+4y+12=0与圆O2:x2+y2﹣14x﹣2y+14=0的位置关系是()A.相离 B.内含C.外切 D.内切2.某食品的保鲜时间(单位:小时)与储存温度(单位:)满足函数关系(为自然对数的底数,为常数)若该食品在的保鲜时间是384小时,在的保鲜时间是24小时,则该食品在的保险时间是()小时A.6 B.12C.18 D.243.已知,则,,的大小关系为()A. B.C. D.4.下列关系中正确个数是()①②③④A.1 B.2C.3 D.45.如果,,那么()A. B.C. D.6.简谐运动可用函数表示,则这个简谐运动的初相为()A. B.C. D.7.下列等式中,正确的是()A. B.C. D.8.在中,是的().A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件9.在空间直角坐标系中,点在轴上,且点到点与点的距离相等,则点坐标为()A. B.C. D.10.已知两条绳子提起一个物体处于平衡状态.若这两条绳子互相垂直,其中一条绳子的拉力为50,且与两绳拉力的合力的夹角为30°,则另一条绳子的拉力为()A.100 B.C.50 D.二、填空题:本大题共6小题,每小题5分,共30分。11.不等式x2-5x+6≤0的解集为______.12.已知,,则的值为__________13.幂函数的图像经过点,则的值为____14.在三棱锥中,,,,则三棱锥的外接球的表面积为________.15.已知圆心为,且被直线截得的弦长为,则圆的方程为__________16.设、为平面向量,若存在不全为零的实数λ,μ使得λμ0,则称、线性相关,下面的命题中,、、均为已知平面M上的向量①若2,则、线性相关;②若、为非零向量,且⊥,则、线性相关;③若、线性相关,、线性相关,则、线性相关;④向量、线性相关的充要条件是、共线上述命题中正确的是(写出所有正确命题的编号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,,.当k为何值时:(1);(2).18.已知函数是奇函数,且;(1)判断函数在区间的单调性,并给予证明;(2)已知函数(且),已知在的最大值为2,求的值19.函数的一段图象如下图所示.(1)求函数的解析式;(2)将函数的图象向右平移个单位,得到的图象.求直线与函数的图象在内所有交点的横坐标之和.20.已知函数,.(1)求的最小正周期和最大值;(2)设,求函数的单调区间.21.已知函数的部分图象如图所示.(1)求的解析式及对称中心坐标:(2)先把的图象向左平移个单位,再向上平移1个单位,得到函数的图象,若当时,关于的方程有实数根,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】先求出两圆的圆心距,再比较圆心距和两个半径的关系得解.【题目详解】由题得圆O1:它表示圆心为O1(3,-2)半径为1的圆;圆O2:,它表示圆心为O2(7,1),半径为6的圆.两圆圆心距为,所以两圆内切.故选:D【题目点拨】本题主要考查两圆位置关系的判定,意在考查学生对这些知识的理解掌握水平.2、A【解题分析】先阅读题意,再结合指数运算即可得解.【题目详解】解:由题意有,,则,即,则,即该食品在的保险时间是6小时,故选A.【题目点拨】本题考查了指数幂的运算,重点考查了解决实际问题的能力,属基础题.3、B【解题分析】利用函数单调性及中间值比大小.【题目详解】,且,故,,故.故选:B4、A【解题分析】根据集合的概念、数集的表示判断【题目详解】是有理数,是实数,不是正整数,是无理数,当然不是整数.只有①正确故选:A【题目点拨】本题考查元素与集合的关系,掌握常用数集的表示是解题关键5、D【解题分析】根据不等式的性质,对四个选项进行判断,从而得到答案.【题目详解】因为,所以,故A错误;因为,当时,得,故B错误;因为,所以,故C错误;因为,所以,故D正确.故选:D.【题目点拨】本题考查不等式的性质,属于简单题.6、B【解题分析】根据初相定义直接可得.【题目详解】由初相定义可知,当时的相位称为初相,所以,函数的初相为.故选:B7、D【解题分析】按照指数对数的运算性质依次判断4个选项即可.【题目详解】对于A,当为奇数时,,当为偶数时,,错误;对于B,,错误;对于C,,错误;对于D,,正确.故选:D.8、B【解题分析】根据不等式的性质,利用充分条件和必要条件的定义进行判定,即可求解,得到答案.【题目详解】在中,若,可得,满足,即必要性成立;反之不一定成立,所以在中,是的必要不充分条件.故选B.【题目点拨】本题主要考查了充分条件和必要条件的判定,其中解答中熟练应用三角函数的性质是解答的关键,属于基础题.9、B【解题分析】先由题意设点的坐标为,根据空间中的两点间距离公式,列出等式,求出,即可得出结果.【题目详解】因为点在轴上,所以可设点的坐标为,依题意,得,解得,则点的坐标为故选:B.10、D【解题分析】利用向量的平行四边形法则求解即可【题目详解】如图,两条绳子提起一个物体处于平衡状态,不妨设,根据向量的平行四边形法则,故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据二次函数的特点即可求解.【题目详解】由x2-5x+6≤0,可以看作抛物线,抛物线开口向上,与x轴的交点为,∴,即原不等式的解集为.12、【解题分析】根据两角和的正弦公式即可求解.【题目详解】由题意可知,因为,所以,所以,则故答案为:.13、2【解题分析】因为幂函数,因此可知f()=214、【解题分析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P-ABC外接球的直径,即可求出三棱锥P-ABC外接球的表面积【题目详解】∵三棱锥P−ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P−ABC外接球的直径.设长方体的棱长分别为x,y,z,则,∴三棱锥P−ABC外接球的直径为,∴三棱锥P−ABC外接球的表面积为.故答案为:26π.【题目点拨】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.15、【解题分析】由题意可得弦心距d=,故半径r=5,故圆C的方程为x2+(y+2)2=25,故答案为x2+(y+2)2=2516、①④【解题分析】利用和线性相关等价于和是共线向量,故①正确,②不正确,④正确.通过举反例可得③不正确【题目详解】解:若、线性相关,假设λ≠0,则,故和是共线向量反之,若和是共线向量,则,即λμ0,故和线性相关故和线性相关等价于和是共线向量①若2,则20,故和线性相关,故①正确②若和为非零向量,⊥,则和不是共线向量,不能推出和线性相关,故②不正确③若和线性相关,则和线性相关,不能推出若和线性相关,例如当时,和可以是任意的两个向量.故③不正确④向量和线性相关的充要条件是和是共线向量,故④正确故答案为①④【题目点拨】本题考查两个向量线性相关的定义,两个向量共线的定义,明确和线性相关等价于和是共线向量,是解题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或2;(2)【解题分析】(1)根据向量共线坐标公式列方程即可求解;(2)根据向量垂直坐标公式列方程即可求解【题目详解】(1)若,有,整理为解得或2;(2)若,有,整理为解得:18、(1)函数在区间是递增函数;证明见解析;(2)或【解题分析】(1)由奇函数定义建立方程组可求出,再用定义法证明单调性即可;(2)根据复合函数的单调性,分类讨论的单调性,结合函数的单调性研究最值即可求解【题目详解】(1)∵是奇函数,∴,又,且,所以,,经检验,满足题意得,所以函数在区间是递增函数证明如下:且,所以有:由,得,,又,故,所以,即,所以函数在区间是递增函数(2)令,由(1)可得在区间递增函数,①当时,是减函数,故当取得最小值时,(且)取得最大值2,在区间的最小值为,故的最大值是,∴②当时,是增函数,故当取得最大值时,(且)取得最大值2,在区间的最大值为,故的最大值是,∴或19、(1)(2)【解题分析】(1)由图象可计算得;(2)由题意可求,进而可以求出在给定区间内与已知直线的交点的横坐标,问题得解.【小问1详解】由题图知,,于是,将的图象向左平移个单位长度,得的图象.于是所以,【小问2详解】由题意得故由,得因为,所以所以或或或,所以,在给定区间内,所有交点的横坐标之和为.20、(1)最小正周期为,最大值.(2)单调减区间为,单调增区间为【解题分析】(1)利用三角恒等变换化简函数解析式为,利用正弦型函数的周期公式以及正弦函数的有界性可求得结果;(2)求得,利用余弦型函数的基本性质可求得函数的增区间和减区间.小问1详解】解:.所以,的最小正周期.当时,取得最大值【小问2详解】解:由(1)知,又,由,解得,所以,函数的单调增区间为.由,解得.所以,函数的单调减区间为.21、(1),(2)【解题分析】(1)由最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论