上海市同济中学2024届高一上数学期末学业水平测试试题含解析_第1页
上海市同济中学2024届高一上数学期末学业水平测试试题含解析_第2页
上海市同济中学2024届高一上数学期末学业水平测试试题含解析_第3页
上海市同济中学2024届高一上数学期末学业水平测试试题含解析_第4页
上海市同济中学2024届高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市同济中学2024届高一上数学期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设函数,其中,,,都是非零常数,且满足,则()A. B.C. D.2.若定义在上的函数的值域为,则取值范围是()A. B.C. D.3.不等式的解集为()A.{x|1<x<4} B.{x|﹣1<x<4}C.{x|﹣4<x<1} D.{x|﹣1<x<3}4.总体由编号为01,02,…,49,50的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第7行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为()附:第6行至第8行的随机数表274861987164414870862888851916207477011116302404297979919624512532114919730649167677873399746732263579003370A.11 B.24C.25 D.205.已知集合,a=3.则下列关系式成立的是A.aAB.aAC.{a}AD.{a}∈A6.若方程则其解得个数为()A.3 B.4C.6 D.57.已知函数在内是减函数,则的取值范围是A. B.C. D.8.下列四个函数中,在整个定义域内单调递减是A. B.C. D.9.过点A(3,4)且与直线l:x﹣2y﹣1=0垂直的直线的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=010.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.直线与圆相交于A,B两点,则线段AB的长为__________12.若,则的最大值为________13.已知在同一平面内,为锐角,则实数组成的集合为_________14.已知,则__________15.若两个正实数,满足,且不等式恒成立,则实数的取值范围是__________16.设,关于的方程有两实数根,,且,则实数的取值范围是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算下列各式:(1)(2)18.已知正方体,分别为和上的点,且,.(1)求证:;(2)求证:三条直线交于一点.19.总书记指出:“我们既要绿水青山,也要金山银山.”新能源汽车环保、节能,以电代油,减少排放,既符合我国的国情,也代表了世界汽车产业发展的方向.工业部表示,到年中国的汽车总销量将达到万辆,并希望新能源汽车至少占总销量的五分之一.江苏某新能源公司某年初购入一批新能源汽车充电桩,每台元,到第年年末每台设备的累计维修保养费用为元,每台充电桩每年可给公司收益元.()(1)每台充电桩第几年年末开始获利;(2)每台充电桩在第几年年末时,年平均利润最大.20.已知函数.(1)若,求的解集;(2)若为锐角,且,求的值.21.已知(1)求的定义域;(2)判断的奇偶性并予以证明;(3)求使的的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】代入后根据诱导公式即可求出答案【题目详解】解:由题,∴,∴,故选:C【题目点拨】本题主要考查三角函数的诱导公式的应用,属于基础题2、C【解题分析】作函数图象,观察图象确定m的范围.【题目详解】函数的图象是对称轴为,顶点为的开口向上的抛物线,当时,;当时,.作其图象,如图所示:又函数在上值域为,所以观察图象可得∴取值范围是,故选:C.3、B【解题分析】把不等式化为,求出解集即可【题目详解】解:不等式可化为,即,解得﹣1<x<4,所以不等式的解集为{x|﹣1<x<4}故选:B【点评】本题考查了一元二次不等式的解法,是基础题4、C【解题分析】根据题意,直接从所给随机数表中读取,即可得出结果.【题目详解】由题意,编号为的才是需要的个体;由随机数表依次可得:,故第四个个体编号为25.故选:C【题目点拨】本题考查了随机数表的读法,注意重复数据只取一次,属于基础题.5、C【解题分析】集合,,所以{a}A故选C.6、C【解题分析】分别画出和的图像,即可得出.【题目详解】方程,即,令,,易知它们都是偶函数,分别画出它们的图像,由图可知它们有个交点.故选:.【题目点拨】本题主要考查的是函数零点,利用数型结合是解决本题的关键,同时考查偶函数的性质,是中档题.7、B【解题分析】由题设有为减函数,且,恒成立,所以,解得,选B.8、C【解题分析】根据指数函数的性质判断,利用特殊值判断,利用对数函数的性质判断,利用偶函数的性质判断【题目详解】对于,,是指数函数,在整个定义域内单调递增,不符合题意;对于,,有,,不是减函数,不符合题意;对于,为对数函数,整个定义域内单调递减,符合题意;对于,,为偶函数,整个定义域内不是单调函数,不符合题意,故选C【题目点拨】本题主要考查指数函数的性质、单调性是定义,对数函数的性质以及偶函数的性质,意在考查综合利用所学知识解答问题的能力,属于中档题9、A【解题分析】依题意,设所求直线的一般式方程为,把点坐标代入求解,从而求出一般式方程.【题目详解】设经过点且垂直于直线的直线的一般式方程为,把点坐标代入可得:,解得,所求直线方程为:.故选:A【题目点拨】本题考查了直线的方程、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.10、B【解题分析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【题目详解】设这10个数据分别为:,根据题意,,所以,.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】算出弦心距后可计算弦长【题目详解】圆的标准方程为:,圆心到直线的距离为,所以,填【题目点拨】圆中弦长问题,应利用垂径定理构建直角三角形,其中弦心距可利用点到直线的距离公式来计算12、【解题分析】化简,根据题意结合基本不等式,取得,即可求解.【题目详解】由题意,实数,且,又由,当且仅当时,即时,等号成立,所以,即的最大值为.故答案为:.13、【解题分析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.14、【解题分析】将题干中的两个等式先平方再相加,利用两角差的余弦公式可求得结果.【题目详解】由,,两式相加有,可得故答案为:.15、【解题分析】根据题意,只要即可,再根据基本不等式中的“”的妙用,求得,解不等式即可得解.【题目详解】根据题意先求得最小值,由,得,所以若要不等式恒成立,只要,即,解得,所以.故答案为:16、【解题分析】结合一元二次方程根的分布的知识列不等式组,由此求得的取值范围.【题目详解】令,依题意关于的方程有两实数根,,且,所以,即,解得.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)运用指数幂运算性质进行计算即可;(2)运用对数的运算公式,结合换底公式进行求解即可.【小问1详解】原式;【小问2详解】原式.18、(1)详见解析;(2)详见解析【解题分析】(1)连结和,由条件可证得和,从而得到∥.(2)结合题意可得直线和必相交,根据线面关系再证明该交点直线上即可得到结论【题目详解】证明:(1)如图,连结和,在正方体中,,∵,∴,又,,∴又在正方体中,,,∴,又,∴同理可得,又,∴∴∥.(2)由题意可得(或者和不平行),又由(1)知∥,所以直线和必相交,不妨设,则,又,所以,同理因为,所以,所以、、三条直线交于一点【题目点拨】(1)证明两直线平行时,可根据三种平行间的转化关系进行证明,也可利用线面垂直的性质进行证明,解题时要注意合理选择方法进行求解(2)证明三线共点的方法是:先证明其中的两条直线相交,再证明该交点在第三条直线上.解题时要依据空间中的线面关系及三个公理,并结合图形进行求解19、(1)第年;(2)第年.【解题分析】(1)构造二次函数模型,由二次函数解得结果;(2)由(1)知年平均利润,结合对勾函数单调性,验证可知,由此可得结果.【小问1详解】设每台充电桩在第年年末的利润为,则,令,解得:,又,,,每台充电桩从第年年末开始获利;【小问2详解】设为每台充电桩在第年年末的年平均利润,则;在上单调递减,在上单调递增,上单调递增,在上单调递减,又,,,,,每台充电桩在第年年末时,年平均利润最大.20、(1)(2)【解题分析】(1)利用三角恒等变换,将函数转化为,由求解;(2)由得到,再由,利用二倍角公式求解.【小问1详解】解:,,,由,得,即,又,故的解集为.【小问2详解】由,得,因为为锐角,所以,则,故,,.21、(1);(2)见解析;(3)见解析.【解题分析】(1)求对数函数的定义域,只要真数大于0即可;(2)利用奇偶性的定义,看和的关系,得到结论;(3)由对数函数的单调性可知,要使,需分和两种情况讨论,即可得到结果.【题目详解】(1)由>0,解得x∈(-1,1)(2)f(-x)=loga=-f(x),且x∈(-1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论