版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
常州市实验初级中学2024届数学高一上期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的大致图象是()A. B.C. D.2.若一个扇形的半径为2,圆心角为,则该扇形的弧长等于()A. B.C. D.3.已知函数,且,则满足条件的的值得个数是A.1 B.2C.3 D.44.定义运算:,将函数的图象向左平移的单位后,所得图象关于轴对称,则的最小值是()A. B.C. D.5.设函数,则下列结论错误的是()A.的一个周期为B.的图像关于直线对称C.的图像关于点对称D.在有3个零点6.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是A.①和② B.②和③C.③和④ D.②和④7.已知角的终边在第三象限,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限8.若,则角的终边在A.第一象限 B.第二象限C.第三象限 D.第四象限9.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为的等腰三角形(另一种是顶角为108°的等腰三角形).例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金中,.根据这些信息,可得()A. B.C. D.10.已知函数,则下列说法不正确的是A.的最小正周期是 B.在上单调递增C.是奇函数 D.的对称中心是二、填空题:本大题共6小题,每小题5分,共30分。11.幂函数的图像经过点,则的值为____12.已知集合M={3,m+1},4∈M,则实数m的值为______13.已知幂函数是奇函数,则___________.14.在区间上随机取一个实数,则事件发生的概率为_________.15.已知向量a,b满足|a|=1,|b|=2,a与b的夹角为60°,则|a-b|=________16.函数的单调递增区间是_________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知不等式的解集为A,不等式的解集为B.(1)求A∩B;(2)若不等式的解集为A∩B,求的值18.已知全集,,集合(1)求;(2)求19.已知函数f(x)的定义域为D,如果存在x0∈D,使得fx0=x0,则称x0为f(x)的一阶不动点;如果存在x0∈D(1)分别判断函数y=2x与(2)求fx=x(3)求fx20.已知角,且.(1)求的值;(2)求的值.21.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用奇偶性定义可知为偶函数,排除;由排除,从而得到结果.【题目详解】为偶函数,图象关于轴对称,排除又,排除故选:【题目点拨】本题考查函数图象的识别,对于此类问题通常采用排除法来进行排除,考虑的因素通常为:奇偶性、特殊值和单调性,属于常考题型.2、B【解题分析】求圆心角的弧度数,再由弧长公式求弧长.【题目详解】∵圆心角为,∴圆心角的弧度数为,又扇形的半径为2,∴该扇形的弧长,故选:B.3、D【解题分析】令则即当时,当时,则令,,由图得共有个点故选4、C【解题分析】由题意可得,再根据平移得到的函数为偶函数,利用对称轴即可解出.【题目详解】因为,所以,其图象向左平移个单位,得到函数的图象,而图象关于轴对称,所以其为偶函数,于是,即,又,所以的最小值是故选:C.5、D【解题分析】利用辅助角公式化简,再根据三角函数的性质逐个判断即可【题目详解】,对A,最小周期为,故也为周期,故A正确;对B,当时,为的对称轴,故B正确;对C,当时,,又为的对称点,故C正确;对D,则,解得,故在内有共四个零点,故D错误故选:D6、D【解题分析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【题目详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选D【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题7、D【解题分析】根据角的终边所在象限,确定其正切值和余弦值的符号,即可得出结果.【题目详解】角的终边在第三象限,则,,点P在第四象限故选:D.8、C【解题分析】直接由实数大小比较角的终边所在象限,,所以的终边在第三象限考点:考查角的终边所在的象限【易错点晴】本题考查角的终边所在的象限,不明确弧度制致误9、C【解题分析】先求出,再根据二倍角余弦公式求出,然后根据诱导公式求出.【题目详解】由题意可得:,且,所以,所以,故选:C【题目点拨】本题考查了二倍角的余弦公式和诱导公式,属于基础题.10、A【解题分析】对进行研究,求出其最小正周期,单调区间,奇偶性和对称中心,从而得到答案.【题目详解】,最小正周期为;单调增区间为,即,故时,在上单调递增;定义域关于原点对称,,故为奇函数;对称中心横坐标为,即,所以对称中心为【题目点拨】本题考查了正切型函数的最小正周期,单调区间,奇偶性和对称中心,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】因为幂函数,因此可知f()=212、3【解题分析】∵集合M={3,m+1},4∈M,∴4=m+1,解得m=3故答案为3.13、1【解题分析】根据幂函数定义可构造方程求得,将的值代入解析式验证函数奇偶性可确定结果.【题目详解】由题意得,∴或1,当时,是偶函数;当时,是奇函数.故答案为:1.14、【解题分析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型15、【解题分析】|a-b|=16、【解题分析】设,或为增函数,在为增函数,根据复合函数单调性“同增异减”可知:函数单调递增区间是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)A∩B={x|-1<x<2};(2).【解题分析】(1)将集合A,B进行化简,再根据集合的交集运算即可求得结果;(2)由题意知-1,2为方程的两根,代入方程联立方程组,即可解得结果.试题解析:解:(1)A={x|-1<x<3},B={x|-3<x<2},∴(2)-1,2为方程x2+ax+b=0的两根∴∴.考点:集合的运算;方程与不等式的综合应用.18、(1);(2).【解题分析】(1)根据集合的并运算,结合已知条件,即可求得结果;(2)先求,再求交集即可.【小问1详解】全集,,集合,故.【小问2详解】集合,故或,故.19、(1)y=2x不存在一阶不动点,(2)0,±1(3)3【解题分析】(1)根据一阶不动点的定义直接分别判断即可;(2)根据一阶不动点的定义直接计算;(3)根据分段函数写出ffx【小问1详解】设函数gx=2x-x,x∈R所以g'x=又g'0=所以∃x0∈0,1,时所以gx在-∞,所以gx≥x所以y=2设函数y=x存在一阶不动点,即存在x0∈0,+∞上,使x【小问2详解】由已知得fx0=x0所以fx=xx2-1【小问3详解】由fx当0<x≤1时,fx=e设Fx=2-ex2-x,x∈0,1,F'x=-ex2-1<0恒成立,所以Fx在0,1上单调递减,且F当1<x<4时,fx=2-x所以1<x<2时,fx=2-x2∈1,32,ffx=2-2-x当2≤x<4时,fx=2-x2∈0,1,ffx=e2-x2,设Gx=e2-x2-x,G'综上所述,fx的二阶周期点的个数为320、(1)(2)【解题分析】(1)依题意可得,再根据同角三角函数的基本关系将弦化切,即可得到的方程,解得,再根据的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沟通的课件教学课件
- 2024年广告资源销售合同文本
- 2024年度合作经营咖啡馆之合伙协议书
- 模拟法庭课件教学课件
- 课件带语音教学课件
- 2024商场美食广场保险服务合同
- 2024【工商局业务表格格式条款备案申请书】工商局合同格式条款整治工作方案
- 2024年度吨不锈钢带打印功能电子地磅秤生产批次检验合同
- 04道路交通事故赔偿合同
- 2024房产借款抵押合同样本
- 2024年危重患者护理管理制度范本(五篇)
- 2024-2025学年陕西省西安交大附中高二(上)第一次月考数学试卷(含答案)
- 14孔子论孝教案-蓝色
- 水厂转让合同模板
- 中国记者日介绍主题班会 课件
- 会计领军人才笔试题库及答案
- 洗浴搓澡承包合同书(2篇)
- 《中小型无人驾驶航空器垂直起降场技术要求》编制说明
- -二三维一体化城市生命线安全风险综合监测预警指挥平台建设方案
- DBJ46-064-2023 海南省绿色建筑评价标准(民用建筑篇)
- 农村网格员个人述职报告
评论
0/150
提交评论