版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省仁怀四中高一上数学期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的部分图象如图所示,下列说法错误的是()A.B.f(x)的图象关于直线对称C.f(x)在[-,-]上单调递减D.该图象向右平移个单位可得的图象2.在下列四组函数中,与表示同一函数的是()A.,B.,C.,D.,3.设集合A={3,4,5},B={3,6},P={x|xA},Q={x|xB},则PQ=A.{3}B.{3,4,5,6}C.{{3}}D.{{3},}4.已知指数函数,将函数的图象上的每个点的横坐标不变,纵坐标扩大为原来的倍,得到函数的图象,再将的图象向右平移个单位长度,所得图象恰好与函数的图象重合,则a的值是()A. B.C. D.5.在轴上的截距分别是,4的直线方程是A. B.C. D.6.“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件7.已知函数,且,,,则的值A.恒为正 B.恒为负C.恒为0 D.无法确定8.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件9.若实数,满足,则关于的函数图象的大致形状是()A. B.C. D.10.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的直角梯形,其中BC=AB=2,则原平面图形的面积为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的单调减区间是__________12.已知函数f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,则a的取值范围为________13.用表示函数在闭区间上的最大值.若正数满足,则的最大值为__________14.命题“,”的否定为____.15.某同学在研究函数
f(x)=(x∈R)
时,分别给出下面几个结论:①等式f(-x)=-f(x)在x∈R时恒成立;②函数f(x)的值域为(-1,1);③若x1≠x2,则一定有f(x1)≠f(x2);④方程f(x)=x在R上有三个根其中正确结论的序号有______.(请将你认为正确的结论的序号都填上)16.已知是球上的点,,,,则球的表面积等于________________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,(1)若,求实数a,b满足的条件;(2)若,求实数m的取值范围18.在初中阶段函数学习中,我们经历了“确定函数的表达式—利用函数图象研究其性质”,函数图象在探索函数的性质中有非常重要的作用,下面我们对已知经过点的函数的图象和性质展开研究.探究过程如下,请补全过程:x…0179…y…m0n…(1)①请根据解析式列表,则_________,___________;②在给出的平面直角坐标系中描点,并画出函数图象;(2)写出这个函数的一条性质:__________;(3)已知函数,请结合两函数图象,直接写出不等式的解集:____________.19.某公司结合公司的实际情况针对调休安排展开问卷调查,提出了,,三种放假方案,调查结果如下:支持方案支持方案支持方案35岁以下20408035岁以上(含35岁)101040(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从“支持方案”的人中抽取了6人,求的值;(2)在“支持方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.20.如图,三棱台DEFABC中,AB=2DE,G,H分别为AC,BC的中点(1)求证:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.21.已知命题,且,命题,且,(1)若,求实数a的取值范围;(2)若p是q的充分条件,求实数a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】先根据图像求出即可判断A,利用正弦函数的对称轴及单调性即可判断BC,通过平移变换即可判断D.【题目详解】根据函数的部分图象,可得所以,故A正确;利用五点法作图,可得,可得,所以,令x,求得,为最小值,故函数的图象关于直线对称,故B正确:当时,,函数f(x)没有单调性,故C错误;把f(x)的图象向右平移个单位可得的图象,故D正确故选:C.2、B【解题分析】根据题意,先看函数的定义域是否相同,再观察两个函数的对应法则是否相同,即可得到结论.【题目详解】对于A中,函数的定义域为,而函数的定义域为,所以两个函数不是同一个函数;对于B中,函数的定义域和对应法则完全相同,所以是同一个函数;对于C中,函数的定义域为,而函数的定义域为,但是解析式不一样,所以两个函数不是同一个函数;对于D中,函数的定义域为,而函数的定义域为,所以不是同一个函数,故选:B.3、D【解题分析】集合P={x|x⊆A}表示集合A的子集构成的集合,故P={∅,{3},{4},{5},{3,4},{3,5},{4,5},{3,4,5}},同样Q={∅,{3},{6},{3,6}}.∴P∩Q={{3},Φ};故选D.4、D【解题分析】根据函数图象变换求出变换后的函数解析式,结合已知条件可得出关于实数的等式,进而可求得实数的值.【题目详解】由题意可得,再将的图象向右平移个单位长度,得到函数,又因为,所以,,整理可得,因为且,解得.故选:D.5、B【解题分析】根据直线方程的截距式写出直线方程即可【题目详解】根据直线方程的截距式写出直线方程,化简得,故选B.【题目点拨】本题考查直线的截距式方程,属于基础题6、B【解题分析】根据指数函数的性质求的解集,由充分、必要性的定义判断题设条件间的关系即可.【题目详解】由,则,所以“”是“”的充分不必要条件.故选:B7、A【解题分析】根据题意可得函数是奇函数,且在上单调递增.然后由,可得,结合单调性可得,所以,以上三式两边分别相加后可得结论【题目详解】由题意得,当时,,于是同理当时,可得,又,所以函数是上的奇函数又根据函数单调性判定方法可得在上为增函数由,可得,所以,所以,以上三式两边分别相加可得,故选A.【题目点拨】本题考查函数奇偶性和单调性的判断及应用,考查函数性质的应用,具有一定的综合性和难度,解题的关键是结合题意得到函数的性质,然后根据单调性得到不等式,再根据不等式的知识得到所求8、B【解题分析】分析】首先根据可得:或,再判断即可得到答案.【题目详解】由可得:或,即能推出,但推不出“”是“”的必要不充分条件故选:B【题目点拨】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.9、B【解题分析】利用特殊值和,分别得到的值,利用排除法确定答案.【题目详解】实数,满足,当时,,得,所以排除选项C、D,当时,,得,所以排除选项A,故选:B.【题目点拨】本题考查函数图像的识别,属于简单题.10、C【解题分析】先求出直观图中,∠ADC=45°,AB=BC=2,,DC=4,即可得到原图形是一个直角梯形和各个边长及高,直接求面积即可.【题目详解】直观图中,∠ADC=45°,AB=BC=2,DC⊥BC,∴,DC=4,∴原来的平面图形上底长为2,下底为4,高为的直角梯形,∴该平面图形的面积为.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】,在上递增,在上递增,在上递增,在上递减,复合函数的性质,可得单调减区间是,故答案为.12、(-4,4]【解题分析】根据复合函数的单调性,结合真数大于零,列出不等式求解即可.【题目详解】令g(x)=x2-ax+3a,因为f(x)=log0.5(x2-ax+3a)在[2,+∞)单调递减,所以函数g(x)在区间[2,+∞)内单调递增,且恒大于0,所以a≤2且g(2)>0,所以a≤4且4+a>0,所以-4<a≤4故答案为:.【题目点拨】本题考查由对数型复合函数的单调性求参数范围,注意定义域即可,属基础题.13、【解题分析】对分类讨论,利用正弦函数的图象求出和,代入,解出的范围,即可得解.【题目详解】当,即时,,,因为,所以不成立;当,即时,,,不满足;当,即时,,,由得,得,得;当,即时,,,由得,得,得,得;当,即时,,,不满足;当,即时,,,不满足.综上所述:.所以得最大值为故答案为:【题目点拨】关键点点睛:对分类讨论,利用正弦函数的图象求出和是解题关键.14、,【解题分析】利用全称量词命题的否定可得出结论.【题目详解】命题“,”为全称量词命题,该命题的否定为“,”.故答案为:,.15、①②③【解题分析】由奇偶性的定义判断①正确,由分类讨论结合反比例函数的单调性求解②;根据单调性,结合单调区间上的值域说明③正确;由只有一个根说明④错误【题目详解】对于①,任取,都有,∴①正确;对于②,当时,,根据函数的奇偶性知时,,且时,,②正确;对于③,则当时,,由反比例函数的单调性以及复合函数知,在上是增函数,且;再由的奇偶性知,在上也是增函数,且时,一定有,③正确;对于④,因为只有一个根,∴方程在上有一个根,④错误.正确结论的序号是①②③.故答案为:①②③【题目点拨】本题通过对多个命题真假的判断,综合考查函数的单调性、函数的奇偶性、函数的图象与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.16、【解题分析】由已知S,A,B,C是球O表面上的点,所以,又,,所以四面体的外接球半径等于以长宽高分别以SA,AB,BC三边长为长方体的外接球的半径,因为,,所以,所以球的表面积点睛:本题考查了球内接多面体,球的表面积公式,属于中档题.其中根据已知条件求球的直径(半径)是解答本题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】(1)直接利用并集结果可得,;(2)根据可得,再对集合的解集情况进行分类讨论,即可得答案;【题目详解】解:(1);,∴,;(2),∴分情况讨论①,即时得;②若,即,中只有一个元素1符合题意;③若,即时得,∴∴综上【题目点拨】由集合间的基本关系求参数时,注意对可变的集合,分空集和不为空集两种情况.18、(1)①,;②答案见解析(2)函数的最小值为(3)或【解题分析】(1)把、分别代入函数解析式即可把下表补充完整;描点、连线即可得到函数的图象;(2)这个函数的最小值为;(3)画出两个函数的图象,结合图象即可求解结论【小问1详解】解:①将和分别代入函数解析式可得:,;②根据表格描点,连线,x013579y01可得这个函数的图象所示:;【小问2详解】解:由图象可知:这个函数的最小值为,(答案不唯一);【小问3详解】解:在同一直角坐标系中作出和图象如图所示:当时,令,解得,当时,令,解得,所以两个函数图象相交于点,所以当时,自变量x的取值范围为或,即不等式的解集为或.19、(1)(2)【解题分析】(1)根据分层抽样按比例抽取,列出方程,能求出n的值;(2)35岁以下有4人,35岁以上(含35岁)有1人.设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为a,利用列举法能求出恰好有1人在35岁以上(含35岁)的概率.【题目详解】(1)根据分层抽样按比例抽取,得:,解得.(2)35岁以下:(人),35岁以上(含35岁):(人)设将35岁以下的4人标记为1,2,3,4,35岁以上(含35岁)的1人记为,,共10个样本点.设:恰好有1人在35岁以上(含35岁),有4个样本点,故.【题目点拨】本题考查概率的求法,分层抽样、古典概型、列举法等基础知识,考查运算求解能力,属于中档题.20、(1)见解析(2)见解析【解题分析】解析:(1)在三棱台DEFABC中,BC=2EF,H为BC的中点,BH∥EF,BH=EF,四边形BHFE为平行四边形,有BE∥HF.BE∥平面FGH在△ABC中,G为AC的中点,H为BC的中点,GH∥AB.AB∥平面FGH又AB∩BE=B,所以平面ABED∥平面FGH.(2)连接HE,EGG,H分别为AC,BC的中点,GH∥AB.AB⊥BC,GH⊥BC.又H为BC的中点,EF∥HC,EF=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版家畜养殖保险产品定制及销售合同3篇
- 2025年度智能门禁系统与消防报警系统联动合同4篇
- 二零二五版跨境电商运营服务战略合作协议3篇
- 2025年度新型门窗及栏杆研发与生产合作协议4篇
- 2025年高端个人财富管理代客理财协议3篇
- 2025年度个人经营性贷款担保保证合同3篇
- 2025版绿色建筑地坪材料供应合同3篇
- 2025年度共享经济门面房租赁与平台建设合同3篇
- 个人汽车购买资助合同2024年模板版B版
- XX市重点蓄水池施工合作合同版
- 2025水利云播五大员考试题库(含答案)
- 中药饮片验收培训
- DB34T 1831-2013 油菜收获与秸秆粉碎机械化联合作业技术规范
- 创伤处理理论知识考核试题及答案
- 税前工资反算表模板
- 2019级水电站动力设备专业三年制人才培养方案
- 肝素诱导的血小板减少症培训课件
- 抖音认证承诺函
- 高等数学(第二版)
- 四合一体系基础知识培训课件
- ICD-9-CM-3手术与操作国家临床版亚目表
评论
0/150
提交评论