2024届云南省文山州广南二中高一上数学期末质量检测试题含解析_第1页
2024届云南省文山州广南二中高一上数学期末质量检测试题含解析_第2页
2024届云南省文山州广南二中高一上数学期末质量检测试题含解析_第3页
2024届云南省文山州广南二中高一上数学期末质量检测试题含解析_第4页
2024届云南省文山州广南二中高一上数学期末质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省文山州广南二中高一上数学期末质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则()A. B.C. D.2.已知是非零向量且满足,,则与的夹角是()A. B.C. D.3.对于直线的截距,下列说法正确的是A.在y轴上的截距是6 B.在x轴上的截距是6C.在x轴上的截距是3 D.在y轴上的截距是-34.命题P:“,”的否定为A., B.,C., D.,5.我国在文昌航天发射场用长征五号运载火箭成功发射探月工程端娥五号探测器,顺利将探测器送入预定轨道,经过两次轨道修正,嫦娥五号顺利进入环月轨道飞行,嫦娥五号从椭圆形环月轨道变为近圆形环月轨道,若这时把近圆形环月轨道看作圆形轨道,嫦娥五号距离月表400千米,已知月球半径约为1738千米,则嫦娥五号绕月每旋转弧度,飞过的路程约为()()A.1069千米 B.1119千米C.2138千米 D.2238千米6.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为A. B.C.90 D.817.已知函数若曲线与直线的交点中,相邻交点的距离的最小值为,则的最小正周期为A. B.C. D.8.在长方体中,,则异面直线与所成角的大小是A. B.C. D.9.的值是A. B.C. D.10.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,天体就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森()又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述,两颗星的星等与亮度满足(),其中星等为的星的亮度为(,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的倍,则的近似值为(当较小时,)()A1.23 B.1.26C.1.51 D.1.57二、填空题:本大题共6小题,每小题5分,共30分。11.已知非空集合,(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围12.函数为奇函数,当时,,则______13.下列四个命题:①函数与的图象相同;②函数的最小正周期是;③函数的图象关于直线对称;④函数在区间上是减函数其中正确的命题是__________(填写所有正确命题的序号)14.已知幂函数f(x)=xa的图象经过点(8,2),则f(27)的值为____________15.已知角终边经过点,则___________.16.计算:______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:0x5020(1)请将表中数据补充完整,并直接写出函数的解析式;(2)将的图象向右平移3个单位,然后把曲线上各点的横坐标变为原来的倍(纵坐标不变),得到的图象.若关于x的方程在上有解,求实数a的取值范围18.已知圆与直线相切,圆心在直线上,且直线被圆截得的弦长为.(1)求圆的方程,并判断圆与圆的位置关系;(2)若横截距为-1且不与坐标轴垂直的直线与圆交于两点,在轴上是否存在定点,使得,若存在,求出点坐标,若不存在,说明理由.19.已函数.(1)求f(x)的最小正周期;(2)求f(x)的单调递增区间.20.如图,在边长为2的正方形ABCD中,E,F分别是边AB,BC的中点,用向量的方法(用其他方法解答正确同等给分)证明:21.某厂家拟在年举行某产品的促销活动,经调查,该产品的年销售量(即该产品的年产量)(单位:万件)与年促销费(单位:万元)满足(为常数),如果不举行促销活动,该产品的年销售量是万件,已知年生产该产品的固定投入为万元,每生产万件该产品需要再投入万元,厂家将每件产品的销售价格定为每件产品年平均成本的倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).(1)将年该产品的利润(单位:万元)表示为年促销费用的函数;(2)该厂家年的促销费用为多少万元时,厂家的利润最大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】详解】分析:求解出集合,得到,即可得到答案详解:由题意集合,,则,所以,故选C点睛:本题考查了集合的混合运算,其中正确求解集合是解答的关键,着重考查了学生的推理与运算能力2、B【解题分析】利用向量垂直求得,代入夹角公式即可.【题目详解】设的夹角为;因为,,所以,则,则故选:B【题目点拨】向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.3、A【解题分析】令,得y轴上的截距,令得x轴上的截距4、B【解题分析】“全称命题”的否定是“特称命题”根据全称命题的否定写出即可【题目详解】解:命题P:“,”的否定是:,故选B【题目点拨】本题考察了“全称命题”的否定是“特称命题”,属于基础题.5、D【解题分析】利用弧长公式直接求解.【题目详解】嫦娥五号绕月飞行半径为400+1738=2138,所以嫦娥五号绕月每旋转弧度,飞过的路程约为(千米).故选:D6、B【解题分析】解:由已知中的三视图可得:该几何体是一个以俯视图为底面的斜四棱柱,其底面面积为:3×6=18,前后侧面的面积为:3×6×2=36,左右侧面的面积为:,故棱柱的表面积为:故选B点睛:本题考查知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键,由三视图判断空间几何体(包括多面体、旋转体和组合体)的结构特征是高考中的热点问题.7、D【解题分析】将函数化简,根据曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,即ωx2kπ或ωx2kπ,k∈Z,建立关系,可得ω的值,即得f(x)的最小正周期【题目详解】解:函数f(x)=cosωx+sinωx,ω>0,x∈R化简可得:f(x)sin(ωx)∵曲线y=f(x)与直线y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故选D【题目点拨】本题考查了和差公式、三角函数的图象与性质、三角函数的方程的解法,考查了推理能力与计算能力,属于中档题8、C【解题分析】连接为异面直线与所成角,几何体是长方体,是,,异面直线与所成角的大小是,故选C.9、B【解题分析】由余弦函数的二倍角公式把等价转化为,再由诱导公式进一步简化为,由此能求出结果详解】,故选B【题目点拨】本题考查余弦函数的二倍角公式的应用,解题时要认真审题,仔细解答,注意诱导公式的灵活运用,属于基础题.10、B【解题分析】根据题意列出方程,结合对数式与指数式的互化以及对数运算性质即可求解.【题目详解】设“心宿二”的星等为,“天津四”的星等为,“心宿二”和“天津四”的亮度分别为,,,,,所以,所以,所以,所以与最接近的是1.26,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)【解题分析】(1)根据集合的运算法则计算;(2)根据充分不必要条件的定义求解【小问1详解】由已知,或,所以或=;【小问2详解】“”是“”的充分不必要条件,则,解得,所以的范围是12、【解题分析】根据对数运算和奇函数性质求解即可.【题目详解】解:因为函数为奇函数,当时,所以.故答案为:13、①②④【解题分析】首先需要对命题逐个分析,利用三角函数的相关性质求得结果.【题目详解】对于①,,所以两个函数的图象相同,所以①对;对于②,,所以最小正周期是,所以②对;对于③,因为,所以,,,因为,所以函数的图象不关于直线对称,所以③错,对于④,,当时,,所以函数在区间上是减函数,所以④对,故答案为①②④【题目点拨】该题考查的是有关三角函数的性质,涉及到的知识点有利用诱导公式化简函数解析式,余弦函数的周期,正弦型函数的单调性,属于简单题目.14、3【解题分析】根据幂函数f(x)=xa的图象经过点(8,2)求出a的值,再求f(27)的值.【题目详解】幂函数f(x)=xa的图象经过点(8,2),则8α=2,∴α=,∴f(x)=,∴f(27)==3.故答案为3【题目点拨】本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.15、【解题分析】根据正切函数定义计算【题目详解】由题意故答案为:16、【解题分析】根据幂的运算法则,根式的定义计算【题目详解】故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)填表见解析;;(2).【解题分析】(1)利用正弦型函数的性质即得;(2)由题可得,利用正弦函数的性质可得,即得,即求.【小问1详解】0x2580200.【小问2详解】由题可得,∵,∴,∴,∴,所以,∴.18、(1)相交(2)【解题分析】(1)根据条件求得圆心和半径,从而由圆心距确定两圆的位置关系;(2)设,与圆联立得,用坐标表示斜率结合韦达定理求解即可.试题解析:(1)设圆心为,则,(2)联立,,(2)法二:联立假设存在则,故存在)满足条件.19、(1);(2),k∈Z.【解题分析】(1)首先利用三角恒等变换化简函数,根据周期公式求函数周期;(2)代入单调递增区间,求解函数的单调递增区间.【题目详解】解:(1).所以,f(x)的周期为.(2)由(k∈Z),得(k∈Z).所以,f(x)的单调递增区间是,k∈Z.20、证明见解析【解题分析】建立直角坐标系,先写出,再按照数量积的坐标运算证明即可.【题目详解】如图,以A原点,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论