版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市一中、六中、八中2024届数学高一上期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆的圆心和半径为()A.(1,1)和11 B.(-1,-1)和11C.(-1,-1)和 D.(1,1)和2.函数f(x)=ln(-x)-x-2的零点所在区间为()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)3.已知函数,若(其中.),则的最小值为()A. B.C.2 D.44.已知函数,现有下列四个结论:①对于任意实数a,的图象为轴对称图形;②对于任意实数a,在上单调递增;③当时,恒成立;④存在实数a,使得关于x的不等式的解集为其中所有正确结论的序号是()A.①② B.③④C.②③④ D.①②④5.为了得到函数的图象,只需将函数上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度6.若实数满足,则的最小值为()A.1 B.C.2 D.47.设函数的定义域为.则“在上严格递增”是“在上严格递增”的()条件A.充分不必要 B.必要不充分C.充分必要 D.既不充分也不必要8.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知是第三象限角,则是A.第一象限角 B.第二象限角C.第一或第四象限角 D.第二或第四象限角10.已知是上的奇函数,且当时,,则当时,()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知关于的方程在有解,则的取值范围是________12.函数关于直线对称,设,则________.13.若,则____14.已知,,则的最大值为______;若,,且,则______.15.已知函数,且关于的方程有且仅有一个实数根,那实数的取值范围为________16.若,则的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某人计划用篱笆围成一个一边靠墙(墙的长度没有限制)的矩形生态种植园.设生态种植园的长为,宽为(1)若生态种植园面积为,则为何值时,可使所用篱笆总长最小?(2)若使用的篱笆总长度为,求的最小值18.为迎接党的“十九大”胜利召开与响应国家交给的“提速降费”任务,某市移动公司欲提供新的资费套餐(资费包含手机月租费、手机拨打电话费与家庭宽带上网费).其中一组套餐变更如下:原方案资费手机月租费手机拨打电话家庭宽带上网费(50M)18元/月0.2元/分钟50元/月新方案资费手机月租费手机拨打电话家庭宽带上网费(50M)58元/月前100分钟免费,超过部分元/分钟(>0.2)免费(1)客户甲(只有一个手机号和一个家庭宽带上网号)欲从原方案改成新方案,设其每月手机通话时间为分钟(),费用原方案每月资费-新方案每月资费,写出关于函数关系式;(2)经过统计,移动公司发现,选这组套餐的客户平均月通话时间分钟,为能起到降费作用,求的取值范围19.已知函数,.(1)求函数的定义域;(2)求不等式的解集.20.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.21.已知函数部分图象如图所示.(1)当时,求的最值;(2)设,若关于的不等式恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据圆的标准方程写出圆心和半径即可.【题目详解】因,所以圆心坐标为,半径为,故选:D2、A【解题分析】先计算,,根据函数的零点存在性定理可得函数的零点所在的区间【题目详解】函数,时函数是连续函数,,,故有,根据函数零点存在性定理可得,函数的零点所在的区间为,故选:【题目点拨】本题主要考查函数的零点存在性定理的应用,不等式的性质,属于基础题3、B【解题分析】根据二次函数的性质及对数的运算可得,利用均值不等式求最值即可.详解】,由,,即,,当且仅当,即时等号成立,故选:B4、D【解题分析】根据函数的解析式,可知其关于直线,可判断①正确;是由与相加而成,故该函数为单调函数,由此可判断②;根据的函数值情况可判断③;看时情况,结合函数的单调性,可判断④的正误.【题目详解】对①,因为函数与|的图象都关于直线对称,所以的图象关于直线对称,①正确对②,当时,函数与都单调递增,所以也单调递增,②正确对③,当时,,③错误对④,因为图象关于直线对称,在上单调递减,在上单调递增,且,所以存在,使得的解集为,④正确故选:D5、A【解题分析】根据函数图象的平移变换即可得到答案.【题目详解】选项A:把函数上所有的点向左平移个单位长度可得的图象,选项A正确;选项B:把函数上所有的点向右平移个单位长度可得的图象,选项B错误;选项C:把函数上所有的点向左平移个单位长度可得的图象,选项C错误;选项D:把函数上所有的点向右平移个单位长度可得的图象,选项D错误;故选:A.6、C【解题分析】先根据对数的运算得到,再用基本不等式求解即可.【题目详解】由对数式有意义可得,由对数的运算法则得,所以,结合,可得,所以,当且仅当时取等号,所以.故选:.7、A【解题分析】利用特例法、函数单调性的定义结合充分条件、必要条件的定义判断可得出合适的选项.【题目详解】若函数在上严格递增,对任意的、且,,由不等式的性质可得,即,所以,在上严格递增,所以,“在上严格递增”“在上严格递增”;若在上严格递增,不妨取,则函数在上严格递增,但函数在上严格递减,所以,“在上严格递增”“在上严格递增”.因此,“在上严格递增”是“在上严格递增”的充分不必要条件.故选:A.8、C【解题分析】化,可知角的终边所在的象限.【题目详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【题目点拨】本题主要考查了象限角的概念,属于容易题.9、D【解题分析】因为是第三象限角,所以,所以,当为偶数时,是第二象限角,当为奇数时,是第四象限角.故选:D.10、B【解题分析】设,则,求出的解析式,根据函数为上的奇函数,即可求得时,函数的解析式,得到答案.【题目详解】由题意,设,则,则,因为函数为上的奇函数,则,得,即当时,.故选:B.【题目点拨】本题主要考查了利用函数的奇偶性求解函数的解析式,其中解答中熟记函数的奇偶性,合理计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】将原式化为,然后研究函数在上的值域即可【题目详解】解:由,得,令,令,因为,所以,所以,即,因为,所以函数可化为,该函数在上单调递增,所以,所以,所以,所以的取值范围是,故答案为:12、1【解题分析】根据正弦及余弦函数的对称性的性质可得的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心,即可求值.【题目详解】∵函数f(x)的图象关于x对称∵f(x)=3sin(ωx+φ)的对称轴为函数g(x)=3cos(ωx+φ)+1的对称中心故有则1故答案为1【题目点拨】本题考查了正弦及余弦函数的性质属于基础题13、##0.25【解题分析】运用同角三角函数商数关系式,把弦化切代入即可求解.【题目详解】,故答案为:.14、①.14②.10【解题分析】根据数量积的运算性质,计算的平方即可求出最大值,两边平方,可得,计算的平方即可求解.【题目详解】,当且仅当同向时等号成立,所以,即的最大值为14,由两边平方可得:,所以,所以,即.故答案为:14;10【题目点拨】本题主要考查了数量积的运算性质,数量积的定义,考查了运算能力,属于中档题.15、【解题分析】利用数形结合的方法,将方程根的问题转化为函数图象交点的问题,观察图象即可得到结果.【题目详解】作出的图象,如下图所示:∵关于的方程有且仅有一个实数根,∴函数的图象与有且只有一个交点,由图可知,则实数的取值范围是.故答案为:.16、1或【解题分析】由诱导公式、二倍角公式变形计算【题目详解】,所以或,时,;时,故答案为:1或三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为,为;(2).【解题分析】(1)根据题意,可得,篱笆总长为,利用基本不等式可求出的最小值,即可得出对应的值;(2)由题可知,再利用整体乘“1”法和基本不等式,求得,进而得出的最小值.【小问1详解】解:由已知可得,而篱笆总长为,又,则,当且仅当,即时等号成立,菜园的长为,宽为时,可使所用篱笆总长最小【小问2详解】解:由已知得,,又,,当且仅当,即时等号成立,的最小值是18、(1);(2).【解题分析】(1)关键是求出原资费和新资费,原资费为68+0.2x,新资费是分段函数,x≤100时,为58,当x>100时,为,相减可得结论;(2)只要(1)中的y>0,则说明节省资费,列出不等式可得,注意当100<x≤400时,函数y为减函数,因此在x=400时取最小值,由此最小值>0,可解得范围试题解析:(1)i)当,ii)当,综上所述(未写扣一分)(2)由题意,恒成立,显然,当,,当,因为,为减函数所以当时,解得从而19、(1)(2)答案见解析【解题分析】(1)根据对数的真数大于零可得出关于的不等式组,由此可解得函数的定义域;(2)将所求不等式变形为,分、两种情况讨论,利用对数函数的单调性结合函数的定义域可求得原不等式的解集.【小问1详解】解:,则有,解得,故函数的定义域为.【小问2详解】解:当时,函数在上为增函数,由,可得,所以,解得,此时不等式的解集为;当时,函数在上为减函数,由,可得,所以,解得,此时不等式的解集为.综上所述,当时,不等式的解集为;当时,不等式的解集为.20、(1)或;(2)【解题分析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届湖北省孝感市文昌中学生物高三上期末调研模拟试题含解析
- 2025届河南平顶山舞钢一高生物高一上期末质量检测试题含解析
- 绍兴市重点中学2025届高三生物第一学期期末教学质量检测模拟试题含解析
- 2025届黔东南市重点中学生物高一第一学期期末质量跟踪监视试题含解析
- 2025届湖南G10教育联盟高一上数学期末教学质量检测模拟试题含解析
- 江西省南昌市进贤二中2025届语文高三第一学期期末学业质量监测试题含解析
- 江苏省吴江市平望中学2025届高一数学第一学期期末预测试题含解析
- 2025届湖北省武汉市汉口北高中高三英语第一学期期末达标测试试题含解析
- 福建省福州四中2025届数学高二上期末监测模拟试题含解析
- 全国18名校大联考2025届数学高三第一学期期末统考试题含解析
- 园林一级养护质量标准
- 部编人教版最新六年级数学上册应用题与解决问题专项
- 新课程背景下初中语文教学的转变与创新
- 宁波市珍贵用材树种资源发展规划报告
- 有效市场假说.ppt
- 理论力学习题集含答案
- 住房和城乡建设管理局爱国卫生月活动总结
- “碑学”、“帖学”献疑.doc
- 16.金色的草地(课堂实录)
- 尾矿库在线监测管理文档
- 国有股大宗交易制度问题及完善建议
评论
0/150
提交评论