2024届云南省怒江市高一上数学期末综合测试试题含解析_第1页
2024届云南省怒江市高一上数学期末综合测试试题含解析_第2页
2024届云南省怒江市高一上数学期末综合测试试题含解析_第3页
2024届云南省怒江市高一上数学期末综合测试试题含解析_第4页
2024届云南省怒江市高一上数学期末综合测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省怒江市高一上数学期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,的最值情况为()A.有最大值,但无最小值 B.有最小值,有最大值1C.有最小值1,有最大值 D.无最大值,也无最小值2.已知,则的值为()A.-4 B.C. D.43.已知函数为上偶函数,且在上的单调递增,若,则满足的的取值范围是()A. B.C. D.4.在中,“角为锐角”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行C.异面 D.以上都有可能6.已知函数,则函数的最小正周期为A. B.C. D.7.下列函数中,既是奇函数,又是增函数的是()①;②;③;④A.①② B.①④C.②③ D.③④8.若集合,则()A.或 B.或C.或 D.或9.已知,函数在上递减,则的取值范围为()A. B.C. D.10.设,则()A.3 B.2C.1 D.-1二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则=_______________.12.若,且,则的值为__________13.已知定义在上的偶函数在上递减,且,则不等式的解集为__________14.已知向量,若,则m=____.15.某学校在校学生有2000人,为了增强学生的体质,学校举行了跑步和登山比赛,每人都参加且只参加其中一项比赛,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,全校参加登山的人数占总人数的.为了了解学生对本次比赛的满意程度,按分层抽样的方法从中抽取一个容量为200的样本进行调查,则应从高三年级参加跑步的学生中抽取人数为______.16.已知函数,则当_______时,函数取得最小值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)请在给定的坐标系中画出此函数的图象;(2)写出此函数的定义域及单调区间,并写出值域.18.已知函数.(1)求不等式的解集;(2)函数,若存在,使得成立,求实数的取值范围;(3)若函数,讨论函数的零点个数.19.已知集合(1)当时,求;(2)若“”是“”充分条件,求实数a的取值范围20.已知二次函数f(x)满足:f(0)=f(4)=4,且该函数的最小值为1(1)求此二次函数f(x)的解析式;(2)若函数f(x)的定义域为A=m,n(其中0<m<n),问是否存在这样的两个实数m,n,使得函数f(x)的值域也为A?若存在,求出m,n(3)若对于任意x1∈0,3,总存在x2∈1,221.如图,以轴的非负半轴为始边作角与,它们的终边分别与单位圆相交于点,已知点的横坐标为(1)求的值;(2)若,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用二次函数的图象与性质,得到二次函数的单调性,即可求解最值,得到答案.【题目详解】由题意,函数,可得函数在区间上单调递增,所以当时,函数取得最小值,最小值为,当时,函数取得最小值,最小值为,故选C.【题目点拨】本题主要考查了二次函数的性质及其应用,其中解答中熟练利用二次函数的性质求解是解答的关键,着重考查了推理与计算能力,属于基础题.2、A【解题分析】由题,解得.故选A.3、B【解题分析】根据偶函数的性质和单调性解函数不等式【题目详解】是偶函数,.所以不等式化为,又在上递增,所以,或,即或故选:B4、D【解题分析】分析条件与结论的关系,根据充分条件和必要条件的定义确定正确选项.【题目详解】若角为锐角,不妨取,则,所以“角为锐角”是“”的不充分条件,由,可得,所以角不一定为锐角,所以“角为锐角”是“”的不必要条件,所以“角为锐角”是“”的既不充分也不必要条件,故选:D.5、B【解题分析】因为G1,G2分别是△SAB和△SAC的重心,所以,所以.又因为M、N分别为AB、AC的中点,所以MN//BC,所以考点:线面平行的判定定理;线面平行的性质定理;公理4;重心的性质点评:我们要掌握重心性质:若G1为△SAB的重心,M为AB中点,则6、C【解题分析】去绝对值符号,写出函数的解析式,再判断函数的周期性【题目详解】,其中,所以函数的最小正周期,选择C【题目点拨】本题考查三角函数最小正周期的判断方法,需要对三角函数的解析式整理后,根据函数性质求得7、D【解题分析】对每个函【解题分析】判断奇偶性及单调性即可.【题目详解】对于①,,奇函数,在和上分别单增,不满足条件;对于②,,偶函数,不满足条件;对于③,,奇函数,在R上单增,符合题意;对于④,,奇函数,在R上单增,符合题意;故选:D8、B【解题分析】根据补集的定义,即可求得的补集.【题目详解】∵,∴或,故选:B【题目点拨】本小题主要考查补集的概念和运算,属于基础题.9、B【解题分析】求出f(x)的单调减区间A,令(,π)⊆A,解出ω的范围【题目详解】解:f(x)sin(ωx),令,解得x,k∈Z∵函数f(x)sin(ωx)(ω>0)在(,π)上单调递减,∴,解得ω2k,k∈Z∴当k=0时,ω故选:B【题目点拨】本题考查了三角函数的单调性与单调区间,考查转化能力与计算能力,属于基础题10、B【解题分析】直接利用诱导公式化简,再根据同角三角函数的基本关系代入计算可得;【题目详解】解:因为,所以;故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由同角三角函数关系求出,最后利用求解即可.【题目详解】由,且得则,则.故答案为:.12、【解题分析】∵且,∴,∴,∴cosα+sinα=0,或cosα−sinα=(不合题意,舍去),∴,故答案为−1.13、【解题分析】因为,而为偶函数,故,故原不等式等价于,也就是,所以即,填点睛:对于偶函数,有.解题时注意利用这个性质把未知区间的性质问题转化为已知区间上的性质问题去处理14、-1【解题分析】求出的坐标,由向量共线时坐标的关系可列出关于的方程,从而可求出的值.【题目详解】解:∵,∴,∵,,∴,解得.故答案为:-115、【解题分析】由题意求得样本中抽取的高三的人数为人进而求得样本中高三年级参加登山的人,即可求解.【题目详解】由题意,高一、高二、高三年级参加跑步的人数分别为a,b,c,且,所以样本中抽取的高三的人数为人,又因为全校参加登山的人数占总人数的,所以样本中高三年级参加登山的人数为,所以样本中高三年级参加跑步的人数为人.故答案为:.16、①.##②.【解题分析】根据求出的范围,根据余弦函数的图像性质即可求其最小值.【题目详解】∵,∴,∴当,即时,取得最小值为,∴当时,最小值为.故答案为:;-3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)答案见解析(2)答案见解析【解题分析】(1)根据函数解析式,分别作出各段图象即可;(2)由解析式可直接得出函数的定义域,由图观察,即可得到单调区间以及值域【题目详解】图象如图所示(2)定义域为或或,增区间为,减区间为,,,,值域为18、(1)(2)(3)答案见解析【解题分析】(1)根据题意条件,分别求解的定义域和解对数不等式即可完成求解;(2)通过题意条件,找到和两函数值域的关系,分别求解出对应的值域,通过分类讨论即可完成求解;(3)通过题意条件,通过讨论的值,分别作出对应的函数图像,借助换元,观察函数图像的交点状况,从而完成求解.【小问1详解】函数,由,可得,即的定义域为;不等式,所以,即为,解得,则原不等式的解为;【小问2详解】函数,若存在,使得成立,则和在上的值域的交集不为空集;由(1)可知:时,显然单调递减,所以其值域为;若,则在上单调递减,所以的值域为,此时只需,即,所以;若,则在递增,可得的值域为,此时与的交集显然为空集,不满足题意;综上,实数的范围是;小问3详解】由,得,令,则,画出的图象,当,只有一个,对应3个零点,当时,,此时,由,得在,三个分别对应一个零点,共3个,在时,,三个分别对应1个,1个,3个零点,共5个,综上所述:当时,只有1个零点,当或时,有3个零点,当时,有5个零点.【题目点拨】方法点睛:对于“存在,使得成立”,需要将其转化成两函数值域的关系,即两个函数的值域有交集,需根据函数的具体范围进行适时的分类讨论即可.19、(1);(2)或.【解题分析】(1)解一元二次不等式化简集合B,把代入,利用补集、交集的定义直接计算作答.(2)由给定条件可得,再借助集合的包含关系列式计算作答.【小问1详解】当时,,解不等式得:或,则或,有,所以.【小问2详解】由(1)知,或,因“”是“”的充分条件,则,显然,,因此,或,解得或,所以实数a取值范围是或.20、(1)f(x)=34x2-3x+4(2)存在满足条件的m,n,其中【解题分析】1设f(x)=a(x-2)2+1,由f(0)=4,求出a2分m<n≤2时,当m<2<n时,当2≤m<n时,三种情况讨论,可得满足条件的m,n,其中m=1,n=4;3若对于任意的x1∈0,3,总存在x解析:(1)依题意,可设f(x)=a(x-2)2+1,因f(0)=4,代入得(2)假设存在这样的m,n,分类讨论如下:当m<n≤2时,依题意,f(m)=n,f(n)=m,即3m+n=83,代入进一步得当m<2<n时,依题意m=f(2)=1,若n>3,f(n)=n,解得n=4或43若2<n≤3,n=f(1)=7当2≤m<n时,依题意,f(m)=m,f(n)=n,即34m2-3m+4=m,综上:存在满足条件的m,n,其中m=1,n=4.(3)依题意:2x由(1)可知,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论