版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省部分重点中学2024届数学高一上期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数是定义在R上的周期为2的偶函数,当时,,则A. B.C. D.2.已知,则“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知奇函数fx在R上是增函数,若a=-flog215,b=fA.a<b<c B.b<a<cC.c<b<a D.c<a<b4.“”是“”的()A.充要条件 B.既不充分也不必要条件C.充分不必要条件 D.必要不充分条件5.函数单调递增区间为A. B.C. D.6.若函数是定义在上的偶函数,在上单调递减,且,则使得的的取值范围是()A. B.C. D.7.表示不超过实数的最大整数,是方程的根,则()A. B.C. D.8.我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图像来研究函数的性质,也常用函数的解析式来琢磨函数图像的特征.我们从这个商标中抽象出一个图象如图,其对应的函数可能是()A. B.C. D.9.设集合,则()A.(1,2] B.[3,+∞)C.(﹣∞,1]∪(2,+∞) D.(﹣∞,1]∪[3,+∞)10.已知函数,,则()A.的最大值为 B.在区间上只有个零点C.的最小正周期为 D.为图象的一条对称轴二、填空题:本大题共6小题,每小题5分,共30分。11.已知且,函数的图象恒经过定点,正数、满足,则的最小值为____________.12.奇函数f(x)是定义在[-2,2]上的减函数,若f(2a+1)+f(4a-3)>0,则实数a的取值范围是_______13.将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变,再将图象向右平移个单位后,所得图象关于原点对称,则的值为______14.已知关于的不等式的解集为,其中,则的最小值是___________.15.函数y=cos2x-sinx的值域是__________________16.已知集合,,则集合中子集个数是____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)在所给坐标系中画出函数在区间的图象(只作图不写过程).18.已知函数.(1)当时,求函数的零点;(2)若不等式在时恒成立,求实数k的取值范围.19.已知集合,,.(1)求,;(2)若,求实数a的取值范围.20.已知函数(1)求的定义域;(2)判断的奇偶性,并说明理由;(3)设,证明:21.女排世界杯比赛采用局胜制,前局比赛采用分制,每个队只有赢得至少分,并同时超过对方分时,才胜局;在决胜局(第五局)采用分制,每个队只有赢得至少分,并领先对方分为胜.在每局比赛中,发球方赢得此球后可得分,并获得下一球的发球权,否则交换发球权,并且对方得分.现有甲乙两队进行排球比赛.(1)若前三局比赛中甲已经赢两局,乙赢一局.接下来的每局比赛甲队获胜的概率为,求甲队最后赢得整场比赛的概率;(2)若前四局比赛中甲、乙两队已经各赢两局比赛.在决胜局(第五局)中,两队当前的得分为甲、乙各分,且甲已获得下一发球权.若甲发球时甲赢分的概率为,乙发球时甲赢分的概率为,得分者获得下一个球的发球权.求甲队在个球以内(含个球)赢得整场比赛的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】依题意有.2、B【解题分析】先由,得到,再由充分条件与必要条件的概念,即可得出结果.【题目详解】由解得,所以由“”能推出“”,反之,不能推出;因此“”是“”必要不充分条件.故选:B.【题目点拨】本题主要考查命题的必要不充分条件的判定,熟记充分条件与必要条件的概念即可,属于常考题型.3、C【解题分析】由题意:a=f-且:log2据此:log2结合函数的单调性有:flog即a>b>c,c<b<a.本题选择C选项.【考点】指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.4、D【解题分析】求得的解集,结合充分条件、必要条件的判定方法,即可求解.【题目详解】由,可得或,所以“”是“或”成立的充分不必要条件,所以“”是“”必要不充分条件.故选:D.5、A【解题分析】,所以.故选A6、C【解题分析】先求解出时的解集,再根据偶函数图像关于轴对称,写出时的解集,即得整个函数的解集.【题目详解】由于函数是偶函数,所以,由题意,当时,,则;又因为函数是偶函数,图象关于轴对称,所以当时,,则,所以的解集为.故选:C.7、B【解题分析】先求出函数的零点的范围,进而判断的范围,即可求出.【题目详解】由题意可知是的零点,易知函数是(0,)上的单调递增函数,而,,即所以,结合性质,可知.故选B.【题目点拨】本题考查了函数的零点问题,属于基础题8、A【解题分析】由图象知函数的定义域排除选项选项B、D,再根据不成立排除选项C,即可得正确选项.【题目详解】由图知的定义域为,排除选项B、D,又因为当时,,不符合图象,所以排除C,故选:A【题目点拨】思路点睛:排除法是解决函数图象问题的主要方法,根据函数的定义域、与坐标轴的交点、函数值的符号、单调性、奇偶性等,从而得出正确结果.9、C【解题分析】由题意分别计算出集合的补集和集合,然后计算出结果.【题目详解】解:∵A=(1,3),∴=(﹣∞,1]∪[3,+∞),∵,∴x﹣2>0,∴x>2,∴B=(2,+∞),∴(﹣∞,1]∪(2,+∞),故选:C10、D【解题分析】首先利用二倍角公式及辅助角公式将函数化简,再结合正弦函数的性质计算可得;【题目详解】解:函数,可得的最大值为2,最小正周期为,故A、C错误;由可得,即,可知在区间上的零点为,故B错误;由,可知为图象的一条对称轴,故D正确故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、9【解题分析】由指数函数的性质可得函数的图象恒经过定点,进而可得,然后利用基本不等式中“1”的妙用即可求解.【题目详解】解:因为函数的图象恒经过定点,所以,又、为正数,所以,当且仅当,即时等号成立,所以的最小值为9.故答案为:9.12、[【解题分析】利用函数的奇偶性、单调性去掉不等式中的符号“f”,可转化为具体不等式,注意函数定义域【题目详解】解:由f(2a+1)+f(4a-3)>0得f(2a+1)>-f(4a-3),又f(x)为奇函数,得-f(4a-3)=f(3-4a),∴f(2a+1)>f(3-4a),又f(x)是定义在[-2,2]上的减函数,∴解得:1即a∈故答案为:1【题目点拨】本题考查函数的奇偶性、单调性的综合应用,考查转化思想,解决本题的关键是利用性质去掉符号“f”13、【解题分析】将函数的图象上所有点的横坐标变为原来的2倍,纵坐标不变得到,再将图象向右平移个单位,得到,即,其图象关于原点对称.∴,,又∴故答案为14、【解题分析】根据一元二次不等式解集的性质,结合基本不等式、对钩函数的单调性进行求解即可.【题目详解】因为关于的不等式的解集为,所以是方程的两个不相等的实根,因此有,因为,所以,当且仅当时取等号,即时取等号,,设,因为函数在上单调递增,所以当时,函数单调递增,所以,故答案为:15、【解题分析】将原函数转换成同名三角函数即可.【题目详解】,,当时取最大值,当时,取最小值;故答案为:.16、4【解题分析】根据题意,分析可得集合的元素为圆上所有的点,的元素为直线上所有的点,则中元素为直线与圆的交点,由直线与圆的位置关系分析可得直线与圆的交点个数,即可得答案【题目详解】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离∴直线与圆相交∴集合有两个元素,故集合中子集个数为4故答案为4【题目点拨】本题考查直线与圆的位置关系,涉及集合交集的意义,解答本题的关键是判定直线与圆的位置关系,以及运用集合的结论:一个含有个元素的集合的子集的个数为个.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)最小正周期T=π;单调递减区间为(k∈Z);(2)图象见解析.【解题分析】(1)利用二倍角公式化简函数,再根公式求函数的周期和单调递减区间;(2)利用“五点法”画出函数的图象.【题目详解】解:f(x)=+cos2x=sin2x+cos2x=sin(2x+)(1)∴函数f(x)的最小正周期T==π,当2kπ+≤2x+≤2kπ+π,k∈Z,时,即2kπ+≤2x≤2kπ+π,k∈Z,故kπ+≤x≤kπ+π,k∈Z∴函数f(x)单调递减区间为[kπ+,kπ+π](k∈Z)(2)图象如下:18、(1);(2).【解题分析】(1)由对数函数的性质可得,再解含指数的一元二次方程,结合指数的性质即可得解.(2)由题设有在上恒成立,判断的单调性并确定其值域,即可求k的范围.【小问1详解】由题设,令,则,∴,可得或(舍),∴,故的零点为.【小问2详解】由,则,即在上恒成立,∵在上均递减,∴在上递减,则,∴k的取值范围为.19、(1),(2)【解题分析】(1)由交集和并集运算直接求解即可.(2)由,则【题目详解】(1)由集合,则,(2)若,则,所以20、(1)(2)偶函数;理由见解析(3)证明见解析【解题分析】(1)根据对数函数的真数大于0建立不等式求解;(2)根据函数的奇偶性定义判断即可;(3)利用不等式的性质及对数函数的单调性证明即可.【小问1详解】因为,即,所以函数的定义域是【小问2详解】因为,都有,且,所以函数为偶函数【小问3详解】因为,所以所以所以因为是增函数,所以因为,,所以21、(1);(2)【解题分析】(1)先确定甲队最后赢得整场比赛的情况,再分别根据独立事件概率乘法公式求解,最后根据互斥事件概率加法公式得结果;(2)先根据比赛规则确定x的取值,再确定甲赢得整场比赛的情况,最后根据独立事件概率乘法公式以及互斥事件概率加法公式得结果.【题目详解】(1)甲队最后赢得整场比赛的情况为第四局赢或第四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖南省建筑安全员-C证考试(专职安全员)题库及答案
- 贵阳学院《市场营销调研》2023-2024学年第一学期期末试卷
- 贵阳康养职业大学《电力系统自动化装置》2023-2024学年第一学期期末试卷
- 广州幼儿师范高等专科学校《英语国家社会与文化(一)》2023-2024学年第一学期期末试卷
- 2025年河北建筑安全员B证考试题库附答案
- 2025青海省建筑安全员-A证考试题库及答案
- 广州医科大学《传统建筑保护与更新》2023-2024学年第一学期期末试卷
- 广州现代信息工程职业技术学院《公共安全与应急管理》2023-2024学年第一学期期末试卷
- 2025年上海建筑安全员-B证考试题库及答案
- 2025湖北建筑安全员知识题库
- 羽绒服委托加工合同
- 四年级下册混合运算100道及答案
- 新概念英语第2册课文(完整版)
- 教师普通话达标分析报告
- 公安食药环培训课件
- 2-氨基-4-硝基苯甲醚化学品安全说明书
- 辽宁省沈阳市皇姑区2023-2024学年九年级上学期期末考试化学试卷
- 【重庆武隆区文旅品牌传播存在的问题及优化建议分析13000字(论文)】
- 水土保持监理工作报告
- 时间管理学习通超星课后章节答案期末考试题库2023年
- 分子影像学概论课件
评论
0/150
提交评论