2024届抚州市重点中学高一上数学期末考试模拟试题含解析_第1页
2024届抚州市重点中学高一上数学期末考试模拟试题含解析_第2页
2024届抚州市重点中学高一上数学期末考试模拟试题含解析_第3页
2024届抚州市重点中学高一上数学期末考试模拟试题含解析_第4页
2024届抚州市重点中学高一上数学期末考试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届抚州市重点中学高一上数学期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在用分层抽样的方法抽取的样本容量为35,则应抽取高一学生人数为()A.8 B.11C.16 D.102.已知函数,则函数()A. B.C. D.3.已知幂函数的图像过点,若,则实数的值为A. B.C. D.4.已知,,则在方向上的投影为()A. B.C. D.5.函数(且)与函数在同一坐标系内的图象可能是()A. B.C. D.6.,,,则()A. B.C. D.7.已知函数,若关于的方程有8个不等的实数根,则的取值范围是A. B.C. D.8.圆(x-1)2+(y-1)2=1上的点到直线x-y=2的距离的最大值是()A.2 B.1+C.2+ D.1+9.已知直线x+3y+n=0在x轴上的截距为-3,则实数n的值为()A. B.C. D.10.若不等式对一切恒成立,那么实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,且,若不等式恒成立,则实数m的取值范围为______12.在中,,,,若将绕直线旋转一周,则所形成的几何体的体积是__________13.已知角的终边过点,则__________14.若,则_____15.已知函数满足,当时,,若不等式的解集是集合的子集,则a的取值范围是______16.已知函数是定义在上的奇函数,当时,,则当时____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,且.(1)求的值;(2)求的定义域;(3)求不等式的解集.18.如图,在几何体中,,均与底面垂直,且为直角梯形,,,,,分别为线段,的中点,为线段上任意一点.(1)证明:平面.(2)若,证明:平面平面.19.已知函数,对任意的,,都有,且当时,(1)求证:是上的增函数;(2)若,解不等式20.榴弹炮是一种身管较短,弹道比较弯曲,适合于打击隐蔽目标和地面目标的野战炮,是地面炮兵的主要炮种之一.为中国共产党建党100周年献礼,某军工研究所对某类型榴弹炮进行了改良.如图所示,建立平面直角坐标系,x轴在地平面上,y轴垂直于地平面,单位长度为.改良后的榴弹炮位于坐标原点.已知该炮弹发射后的轨迹在方程表示的曲线上,其中k与发射方向有关.炮的射程是指炮弹落地点的横坐标(1)求该类型榴弹炮的最大射程;(2)证明:该类型榴弹炮发射的高度不会超过21.已知函数,(1)求的最小正周期;(2)求单调递减区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】先求出高一学生的人数,再利用抽样比,即可得到答案;【题目详解】设高一学生的人数为人,则高二学生人数为,高三学生人数为,,,故选:A2、C【解题分析】根据分段函数的定义域先求出,再根据,根据定义域,结合,即可求出结果.【题目详解】由题意可知,,所以.故选:C.3、D【解题分析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【题目点拨】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.4、A【解题分析】利用向量数量积的几何意义以及向量数量积的坐标表示即可求解.【题目详解】,,在方向上的投影为:.故选:A【题目点拨】本题考查了向量数量积的几何意义以及向量数量积的坐标表示,考查了基本运算求解能力,属于基础题.5、C【解题分析】分,两种情况进行讨论,结合指数函数的单调性和抛物线的开口方向和对称轴选出正确答案.【题目详解】解:当时,增函数,开口向上,对称轴,排除B,D;当时,为减函数,开口向下,对称轴,排除A,故选:C.【题目点拨】思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.6、B【解题分析】根据对数函数和指数函数的单调性即可得出,,的大小关系【题目详解】,,,故选:7、D【解题分析】画出函数的图象,利用函数的图象,判断的范围,然后利用二次函数的性质求解的范围【题目详解】解:函数,的图象如图:关于的方程有8个不等的实数根,必须有两个不相等的实数根且两根位于之间,由函数图象可知,.令,方程化为:,,,开口向下,对称轴为:,可知:的最大值为:,的最小值为:2故选:【题目点拨】本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力,属于中档题8、B【解题分析】根据圆心到直线的距离加上圆的半径即为圆上点到直线距离的最大值求解出结果.【题目详解】因为圆心为,半径,直线的一般式方程为,所以圆上点到直线的最大距离为:,故选:B【题目点拨】本题考查圆上点到直线的距离的最大值,难度一般.圆上点到直线的最大距离等于圆心到直线的距离加上圆的半径,最小距离等于圆心到直线的距离减去半径.9、B【解题分析】根据题意,分析可得点(﹣3,0)在直线x+3y+n=0上,将点的坐标代入直线方程,计算可得答案【题目详解】根据题意,直线x+3y+n=0在x轴上的截距为﹣3,则点(﹣3,0)在直线x+3y+n=0上,即(﹣3)×+n=0,解可得:n=3;故选B【题目点拨】本题考查直线的一般式方程以及截距的计算,关键是掌握直线一般方程的形式,属于基础题10、D【解题分析】由绝对值不等式解法,分类讨论去绝对值,再根据恒成立问题的解法即可求得a的取值范围【题目详解】根据绝对不等式,分类讨论去绝对值,得所以所以所以选D【题目点拨】本题考查了绝对值不等式化简方法,恒成立问题的基本应用,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由基本不等式求得的最小值,解不等式可得的范围【题目详解】∵,,,,∴,当且仅当,即时等号成立,∴的最小值为8,由解得,故答案为:12、【解题分析】依题意可知,旋转体是一个大圆锥去掉一个小圆锥,所以OA=,OB=1所以旋转体的体积:故答案为.13、【解题分析】∵角的终边过点(3,-4),∴x=3,y=-4,r=5,∴cos=故答案为14、【解题分析】首先求函数,再求的值.【题目详解】设,则所以,即,,.故答案为:15、【解题分析】先由已知条件判断出函数的单调性,再把不等式转化为整式不等式,再利用子集的要求即可求得a的取值范围.【题目详解】由可知,关于对称,又,当时,单调递减,故不等式等价于,即,因为不等式解集是集合的子集,所以,解得故答案为:16、【解题分析】设则得到,再利用奇函数的性质得到答案.【题目详解】设则,函数是定义在上的奇函数故答案为【题目点拨】本题考查了利用函数的奇偶性计算函数表达式,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或;(3)或.【解题分析】(1)根据的解析式,结合,即可求得;(2)根据对数的真数大于零,求解一元二次不等式,即可求得结果;(3)根据对数函数的单调性,结合函数定义域,即可求得不等式解集.【小问1详解】由题可知,又因为,即,所以.【小问2详解】由知,,若使有意义,只须,解得或,所以函数的定义域为或.【小问3详解】由对数函数的单调性可得:由,解得或,由,解得,所以或,不等式的解集为或.18、(1)详见解析;(2)详见解析.【解题分析】(1)由题可得,进而可得平面,因为,,所以四边形为平行四边形,即,从而得出平面,平面平面,进而证得平面(2)由题可先证明四边形为正方形,连接,则,再证得平面,进而证得平面平面.【题目详解】证明:(1)因平面,平面,所以.因为平面,平面,所以平面.因为,,所以四边形为平行四边形,所以.因为平面,平面,所以平面.因为,所以平面平面,因为平面,所以平面.(2)因为,所以为等腰直角三角形,则.因为为的中点,且四边形为平行四边形,所以,故四边形为正方形.连接,则.因为平面,平面,所以.因为,平面,平面,所以平面.因为分别,的中点,所以,则平面.因为平面,所以平面平面.【题目点拨】本题主要考查证明线面平行问题以及面面垂直问题,属于一般题19、(1)证明见解析(2)【解题分析】(1)赋值法证明抽象函数单调性;(2)先根据,用辅助法求出,再利用第一问求出的函数单调性解不等式.【小问1详解】由可得:,令,,且,则,因为当时,,所以,,即,由于的任意性,故可证明是上的增函数;【小问2详解】令得:,因为,所以,故,由第一问得到是上的增函数,所以,解得:,故不等式解集为.20、(1)(2)证明见解析【解题分析】(1)解一元二次方程即可求得该类型榴弹炮的最大射程;(2)以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论