2024届河北保定市容城博奥学校数学高一上期末复习检测模拟试题含解析_第1页
2024届河北保定市容城博奥学校数学高一上期末复习检测模拟试题含解析_第2页
2024届河北保定市容城博奥学校数学高一上期末复习检测模拟试题含解析_第3页
2024届河北保定市容城博奥学校数学高一上期末复习检测模拟试题含解析_第4页
2024届河北保定市容城博奥学校数学高一上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北保定市容城博奥学校数学高一上期末复习检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合A. B.C. D.2.若偶函数在上单调递减,且,则不等式的解集是()A. B.C. D.3.设函数,则()A.是偶函数,且在单调递增 B.是偶函数,且在单调递减C.是奇函数,且在单调递增 D.是奇函数,且在单调递减4.已知正方体外接球的表面积为,正方体外接球的表面积为,若这两个正方体的所有棱长之和为,则的最小值为()A. B.C. D.5.下列函数中,以为最小正周期且在区间上为增函数的函数是()A. B.C. D.6.设向量=(1.)与=(-1,2)垂直,则等于A. B.C.0 D.-17.幂函数在区间上单调递增,且,则的值()A.恒大于0 B.恒小于0C.等于0 D.无法判断8.O为正方体底面ABCD的中心,则直线与的夹角为A. B.C. D.9.函数f(x)=ln(-x)-x-2的零点所在区间为()A.(-3,-e) B.(-4,-3)C.(-e,-2) D.(-2,-1)10.已知直线,圆.点为直线上的动点,过点作圆的切线,切点分别为.当四边形面积最小时,直线方程是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若幂函数在区间上是减函数,则整数________12.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.13.亲爱的考生,我们数学考试完整的时间是2小时,则从考试开始到结束,钟表的分针转过的弧度数为___________.14.若函数满足,则______15.已知在平面直角坐标系中,角顶点在原点,始边与轴的正半轴重合,终边经过点,则___________.16.(2016·桂林高二检测)如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD⊥CD,将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是________.(1)A′C⊥BD.(2)∠BA′C=90°.(3)CA′与平面A′BD所成的角为30°.(4)四面体A′-BCD的体积为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义域为的函数是奇函数(1)求,的值;(2)用定义证明在上为减函数;(3)若对于任意,不等式恒成立,求的范围18.设,其中(1)若函数的图象关于原点成中心对称图形,求的值;(2)若函数在上是严格减函数,求的取值范围19.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.20.已知函数.(1)求函数最大值及相应的的值;(2)求函数的单调增区间.21.已知集合,集合(1)求;(2)设集合,若,求实数的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由已知,所以考点:集合的运算2、A【解题分析】根据奇偶性,可得在上单调递增,且,根据的奇偶性及单调性,可得,根据一元二次不等式的解法,即可得答案.【题目详解】由题意得在上单调递增,且,因为,所以,解得,所以不等式的解集是.故选:A3、D【解题分析】利用函数奇偶性的定义可判断出函数的奇偶性,分析函数解析式的结构可得出函数的单调性.【题目详解】函数的定义域为,,所以函数为奇函数.而,可知函数为定义域上减函数,因此,函数为奇函数,且是上的减函数.故选:D.4、B【解题分析】设正方体的棱长为,正方体的棱长为,然后表示出两个正方体外接球的表面积,求出化简变形可得答案【题目详解】解:设正方体的棱长为,正方体的棱长为因为,所以,则因为,所以,因为,所以,故当时,取得最小值,且最小值为故选:B5、B【解题分析】对四个选项依次判断最小正周期及单调区间,即可判断.【题目详解】对于A,,最小正周期为,单调递增区间为,即,在内不单调,所以A错误;对于B,的最小正周期为,单调递增区间为,即,在内单调递增,所以B正确;对于C,的最小正周期为,所以C错误;对于D,的最小正周期为,所以D错误.综上可知,正确的为B故选:B【题目点拨】本题考查了函数的最小正周期及单调区间的判断,根据函数性质判断即可,属于基础题.6、C【解题分析】:正确的是C.点评:此题主要考察平面向量的数量积的概念、运算和性质,同时考察三角函数的求值运算.7、A【解题分析】由已知条件求出的值,则可得幂函数的解析式,再利用幂函数的性质判断即可【题目详解】由函数是幂函数,可得,解得或当时,;当时,因为函数在上是单调递增函数,故又,所以,所以,则故选:A8、D【解题分析】推导出A1C1⊥BD,A1C1⊥DD1,从而D1O⊂平面BDD1,由此得到A1C1⊥D1O【题目详解】∵O为正方体ABCD﹣A1B1C1D1底面ABCD的中心,∴A1C1⊥BD,A1C1⊥DD1,∵BD∩DD1=D,∴A1C1⊥平面BDD1,∵D1O⊂平面BDD1,∴A1C1⊥D1O故答案为:D【题目点拨】本题考查与已知直线垂直的直线的判断,是中档题,做题时要认真审题,注意线面垂直的性质的合理运用9、A【解题分析】先计算,,根据函数的零点存在性定理可得函数的零点所在的区间【题目详解】函数,时函数是连续函数,,,故有,根据函数零点存在性定理可得,函数的零点所在的区间为,故选:【题目点拨】本题主要考查函数的零点存在性定理的应用,不等式的性质,属于基础题10、B【解题分析】求得点C到直线l的距离d,根据,等号成立时,求得点P,进而求得过的圆的方程,与已知圆的方程联立求解.【题目详解】设点C到直线l的距离为,由,此时,,方程为,即,与直线联立得,因为共圆,其圆心为,半径为,圆的方程为,与联立,化简整理得,答案:B二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】由题意可得,求出的取值范围,从而可出整数的值【题目详解】因为幂函数在区间上是减函数,所以,解得,因为,所以,故答案为:212、60°【解题分析】取BC的中点E,则,则即为所求,设棱长为2,则,13、【解题分析】根据角的概念的推广即可直接求出答案.【题目详解】因为钟表的分针转了两圈,且是按顺时针方向旋转,所以钟表的分针转过的弧度数为.故答案为:.14、【解题分析】根据题意,令,结合指数幂的运算,即可求解.【题目详解】由题意,函数满足,令,可得.故答案为:.15、【解题分析】根据角的终边经过点,利用三角函数的定义求得,然后利用二倍角公式求解.【题目详解】因为角的终边经过点,所以,所以,所以,故答案为:16、(2)(4)【解题分析】详解】若A′C⊥BD,又BD⊥CD,则BD⊥平面A′CD,则BD⊥A′D,显然不可能,故(1)错误.因为BA′⊥A′D,BA′⊥CD,故BA′⊥平面A′CD,所以BA′⊥A′C,所以∠BA′C=90°,故(2)正确.因为平面A′BD⊥平面BCD,BD⊥CD,所以CD⊥平面A′BD,CA′与平面A′BD所成的角为∠CA′D,因为A′D=CD,所以∠CA′D=,故(3)错误.四面体A′-BCD的体积为V=S△BDA′·h=××1=,因为AB=AD=1,DB=,所以A′C⊥BD,综上(2)(4)成立.点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)证明见解析;(3).【解题分析】(1)根据奇函数定义,利用且,列出关于、的方程组并解之得;(2)根据函数单调性的定义,任取实数、,通过作差因式分解可证出:当时,,即得函数在上为减函数;(3)根据函数的单调性和奇偶性,将不等式转化为:对任意的都成立,结合二次函数的图象与性质,可得的取值范围【题目详解】解:(1)为上的奇函数,,可得又(1),解之得经检验当且时,,满足是奇函数.(2)由(1)得,任取实数、,且则,可得,且,即,函数在上为减函数;(3)根据(1)(2)知,函数是奇函数且在上为减函数不等式恒成立,即也就是:对任意的都成立变量分离,得对任意的都成立,,当时有最小值为,即的范围是【题目点拨】本题以含有指数式的分式函数为例,研究了函数的单调性和奇偶性,并且用之解关于的不等式,考查了基本初等函数的简单性质及其应用,属于中档题18、(1);(2)【解题分析】(1)根据函数的图象关于原点成中心对称,得到是奇函数,由此求出的值,再验证,即可得出结果;(2)任取,根据函数在区间上是严格减函数,得到对任意恒成立,分离出参数,进而可求出结果.【题目详解】(1)因为函数的图象关于原点成中心对称图形,所以是奇函数,则,解得,此时,因此,所以是奇函数,满足题意;故;(2)任取,因为函数在上严格减函数,则对任意恒成立,即对任意恒成立,即对任意恒成立,因为,所以,则,所以对任意恒成立,又,所以,为使对任意恒成立,只需.即的取值范围是.【题目点拨】思路点睛:已知函数单调性求参数时,可根据单调性的定义,得到不等式,利用分离参数的方法分离出所求参数,得到参数大于(等于)或小于(等于)某个式子的性质,结合题中条件,求出对应式子的最值,即可求解参数范围.(有时会用导数的方法研究函数单调性,进而求解参数范围)19、(1)(2)最大值为,最小值为【解题分析】(1)利用二倍角公式和两角和正弦公式化简再由周期公式计算可得答案;(2)根据当的范围可得,再计算出可得答案.【小问1详解】,所以的最小正周期.【小问2详解】当时,,所以,所以,所以在区间上的最大值为和最小值.20、(1)时,;(2).【解题分析】(1)利用倍角公式对函数进行化简得:,进而得到函数的最大值及对应的的值;(2)将代入的单调递增区间,即可得答案;【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论