2024届云南省开远一中数学高一上期末综合测试模拟试题含解析_第1页
2024届云南省开远一中数学高一上期末综合测试模拟试题含解析_第2页
2024届云南省开远一中数学高一上期末综合测试模拟试题含解析_第3页
2024届云南省开远一中数学高一上期末综合测试模拟试题含解析_第4页
2024届云南省开远一中数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省开远一中数学高一上期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在用分层抽样的方法抽取的样本容量为35,则应抽取高一学生人数为()A.8 B.11C.16 D.102.“”是“函数为偶函数”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.已知函数在上是增函数,则实数的取值范围为()A. B.C. D.4.已知为锐角,为钝角,,则()A. B.C. D.5.已知函数(其中)的最小正周期为,则()A. B.C.1 D.6.设全集,集合,,则图中阴影部分表示的集合是()A. B.C. D.7.已知平面向量,,且,则等于()A.(-2,-4) B.(-3,-6)C.(-5,-10) D.(-4,-8)8.设,则A. B.C. D.9.已知幂函数的图象过点,则的值为()A.3 B.9C.27 D.10.已知A(-4,2,3)关于xOz平面的对称点为,关于z轴的对称点为,则等于()A.8 B.12C.16 D.19二、填空题:本大题共6小题,每小题5分,共30分。11.已知扇形的半径为4,圆心角为,则扇形的面积为___________.12.已知函数的零点依次为a,b,c,则=________13.已知两定点,,如果动点满足,则点的轨迹所包围的图形的面积等于__________14.用半径为的半圆形纸片卷成一个圆锥,则这个圆锥的高为__________15.命题“”的否定是_________.16.若定义域为的函数满足:对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,则m的最大值为______.(是自然对数的底)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知关于x,y的方程C:(1)当m为何值时,方程C表示圆;(2)在(1)的条件下,若圆C与直线l:相交于M、N两点,且|MN|=,求m的值.18.设函数(且)是定义域为R的奇函数(Ⅰ)求t的值;(Ⅱ)若函数的图象过点,是否存在正数m,使函数在上的最大值为0,若存在,求出m的值;若不存在,请说明理由19.如图,在直三棱柱ABC﹣A1B1C1中,∠ACB=90°,AC=BC=2,D,E分别为棱AB,BC的中点,M为棱AA1的中点(1)证明:A1B1⊥C1D;(2)若AA1=4,求三棱锥A﹣MDE的体积20.已知集合.(1)当时,求;(2)若,求实数的取值范围.21.某校高二(5)班在一次数学测验中,全班名学生的数学成绩的频率分布直方图如下,已知分数在分的学生数有14人.(1)求总人数和分数在的人数;(2)利用频率分布直方图,估算该班学生数学成绩的众数和中位数各是多少?(3)现在从分数在分的学生(男女生比例为1:2)中任选2人,求其中至多含有1名男生的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】先求出高一学生的人数,再利用抽样比,即可得到答案;【题目详解】设高一学生的人数为人,则高二学生人数为,高三学生人数为,,,故选:A2、A【解题分析】根据充分必要条件的定义判断【题目详解】时,是偶函数,充分性满足,但时,也是偶函数,必要性不满足应是充分不必要条件故选:A3、D【解题分析】利用二次函数单调性,列式求解作答.【题目详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D4、C【解题分析】利用平方关系和两角和的余弦展开式计算可得答案.【题目详解】因为为锐角,为钝角,,所以,,则.故选:C.5、D【解题分析】根据正弦型函数的最小正周期求ω,从而可求的值.【题目详解】由题可知,,∴.故选:D.6、B【解题分析】由图中阴影部分可知对应集合为,然后根据集合的基本运算求解即可.【题目详解】解:由图中阴影部分可知对应集合为全集,2,3,4,,集合,,,3,,=,=故选:7、D【解题分析】由,求得,再利用向量的坐标运算求解.【题目详解】解:因为,,且,所以m=-4,,所以=(-4,-8),故选:D8、B【解题分析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小9、C【解题分析】求出幂函数的解析式,然后求解函数值【题目详解】幂函数的图象过点,可得,解得,幂函数的解析式为:,可得(3)故选:10、A【解题分析】由题可知∴故选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】先计算扇形的弧长,再利用扇形的面积公式可求扇形的面积【题目详解】根据扇形的弧长公式可得,根据扇形的面积公式可得故答案为:12、【解题分析】根据对称性得出,再由得出答案.【题目详解】因为函数与的图象关于对称,函数的图象关于对称,所以,又,所以.故答案为:13、4π【解题分析】设点的坐标为(则,即(以点的轨迹是以为圆心,2为半径的圆,所以点的轨迹所包围的图形的面积等于4π.即答案为4π14、【解题分析】根据圆锥的底面周长等于半圆形纸片的弧长建立等式,再根据半圆形纸片的半径为圆锥的母线长求解即可.【题目详解】由题得,半圆形纸片弧长为,设圆锥的底面半径为,则,故圆锥的高为.故答案为:【题目点拨】本题主要考查了圆锥展开图中的运算,重点是根据圆锥底面的周长等于展开后扇形的弧长,属于基础题.15、,【解题分析】根据全称命题的否定形式,直接求解.【题目详解】全称命题“”的否定是“,”.故答案为:,16、##【解题分析】不妨设三边的大小关系为:,利用函数的单调性,得出,,的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出的最大值即可.【题目详解】在上严格增,所以,不妨设,因为对任意能构成三角形三边长的实数,均有,,也能构成三角形三边长,所以,因为,所以,因为对任意都成立,所以,所以,所以,所以,所以m的最大值为故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m<5;(2)m=4【解题分析】(1)求出圆的标准方程形式,即可求出m的值;(2)利用半径,弦长,弦心距的关系列方程求解即可【题目详解】解:(1)方程C可化为,显然只要5−m>0,即m<5时,方程C表示圆;(2)因为圆C的方程为,其中m<5,所以圆心C(1,2),半径,则圆心C(1,2)到直线l:x+2y−4=0的距离为,因为|MN|=,所以|MN|=,所以,解得m=4【题目点拨】本题主要考查直线和圆的位置关系的应用,根据圆的标准方程求出圆心和半径是解决本题的关键18、(Ⅰ)t=2,(Ⅱ)不存在【解题分析】(Ⅰ)由题意f(0)=0,可求出t的值;(Ⅱ)假设存在正数符合题意,由函数的图象过点可得,得到的解析式,设,得到关于的解析式,然后对值进行讨论,看是否有满足条件的的值.【题目详解】解:(Ⅰ)因为f(x)是定义域为R的奇函数,∴f(0)=0,∴t=2,经检验符合题意,所以;(Ⅱ)假设存在正数符合题意,因为函数的图象过点,所以,解得,则,设,则,因为,所以,记,,函数在上的最大值为0,∴(ⅰ)若,则函数在有最小值为1,对称轴,∴,所以,故不合题意;(ⅱ)若,则函数在上恒成立,且最大值为1,最小值大于0,①,又此时,又,故无意义,所以应舍去;②,无解,综上所述:故不存在正数,使函数在上的最大值为019、(1)证明见解析(2)【解题分析】(1)通过证明AB⊥CD,AB⊥CC1,证明A1B1⊥平面CDC1,然后证明A1B1⊥C1D;(2)求出底面△DCE的面积,求出对应的高,即点到底面DCE的距离,然后求解四面体M-CDE的体积,由三棱锥A﹣MDE的体积就是三棱锥M﹣CDE的体积得结论.【题目详解】(1)证明:∵∠ACB=90°,AC=BC=2,∴AB⊥CD,AB⊥CC1,CD∩CC1=C,∴AB⊥平面CDC1,∵A1B1∥AB,∴A1B1⊥平面CDC1,∵C1D平面CDC1,∴A1B1⊥C1D;(2)解:三棱锥A﹣MDE的体积就是三棱锥M﹣CDE的体积,AC=BC=2,D,E分别为棱AB,BC的中点,M为棱AA1的中点.AA1=4,所以AM=2,AB⊥CD,三棱锥A﹣MDE的体积:【题目点拨】本题考查线面垂直,考查点到面的距离,解题的关键是利用线面垂直证明线线线垂直,利用等体积法求点到面的距离,是中档题20、(1);(2).【解题分析】(1)m=﹣2时求出集合B,然后进行交集、并集的运算即可;(2)由B⊆A便可得到,解该不等式组即可得到实数m的取值范围试题解析:(1);(2)解:当时,,由中不等式变形得,解得,即.(1).(2),解得,的取值范围为.21、(1)4;(2)众数和中位数分别是107.5,110;(3)﹒【解题分析】(1)先求出分数在内的学生的频率,由此能求出该班总人数,再求出分数在内的学生的频率,由此能求出分数在内的人数(2)利用频率分布直方图,能估算该班学生数学成绩的众数和中位数(3)由题意分数在内有学生6名,其中男生有2名.设女生为,,,,男生为,,从6名学生中选出2名,利用列举法能求出其中至多含有1名男生的概率【小问1详解】分数在内的学生的频率为,∴该班总人数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论