2024届河南省周口市郸城一高数学高一上期末复习检测模拟试题含解析_第1页
2024届河南省周口市郸城一高数学高一上期末复习检测模拟试题含解析_第2页
2024届河南省周口市郸城一高数学高一上期末复习检测模拟试题含解析_第3页
2024届河南省周口市郸城一高数学高一上期末复习检测模拟试题含解析_第4页
2024届河南省周口市郸城一高数学高一上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省周口市郸城一高数学高一上期末复习检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为A.13.25立方丈 B.26.5立方丈C.53立方丈 D.106立方丈2.已知函数,则函数在上单调递增,是恒成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件3.函数f(x)=|x|+(aR)的图象不可能是()A. B.C. D.4.为了得到函数的图象,可以将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位5.若函数的三个零点分别是,且,则()A. B.C. D.6.设,,,则的大小关系是()A B.C. D.7.已知直线的方程是,的方程是,则下列各图形中,正确的是A. B.C. D.8.若函数恰有个零点,则的取值范围是()A. B.C. D.9.命题“对,都有”的否定为()A.对,都有 B.对,都有C.,使得 D.,使得10.若,且,则的值是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若,则_______;若,则实数的取值范围是__________12.已知函数,则不等式的解集为______13.当一个非空数集G满足“如果,则,,,且时,”时,我们称G就是一个数域,以下关于数域的命题:①0和1都是任何数域的元素;②若数域G有非零元素,则;③任何一个有限数域的元素个数必为奇数;④有理数集是一个数域;⑤偶数集是一个数域,其中正确的命题有______________.14.若函数在区间上有两个不同的零点,则实数a的取值范围是_________.15.已知不等式ax2+bx+2>0的解集为{x|-1<x<2},则不等式2x2+bx+a<0的解为______16.已知扇形的周长是2022,则扇形面积最大时,扇形的圆心角的弧度数是___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2021年8月,国务院教育督导委员会办公室印发《关于组织责任督学进行“五项管理”督导的通知》,通知指出,加强中小学生作业、睡眠、手机、读物、体质管理(简称“五项管理”),是深入推进学生健康成长的重要举措.宿州市要对全市中小学生“体能达标”情况进行摸底,采用普查与抽样相结合的方式进行.现从某样本校中随机抽取20名学生参加体能测试,将这20名学生随机分为甲、乙两组,其中甲、乙两组学生人数之比为3:2,测试后,两组各自的成绩统计如下:甲组学生的平均成绩为75分,方差为16;乙组学生的平均成绩为80分,方差为25(1)估计该样本校学生体能测试的平均成绩;(2)求这20名学生测试成绩的标准差.(结果保留整数)18.声强级(单位:)由公式给出,其中声强(单位:).(1)一般正常人听觉能忍受的最高声强为,能听到的最低声强为,求人听觉的声强级范围;(2)在一演唱会中,某女高音的声强级高出某男低音的声强级,请问该女高音的声强是该男低音声强的多少倍?19.如图,在三棱锥中,.(1)画出二面角的平面角,并求它的度数;(2)求三棱锥的体积.20.已知函数.(1)在①,②这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,,求的值域.注:如果选择两个条件分别解答,按第一个解答计分.(2)若,,,求的取值范围.21.已知函数(1)求的最小正周期;(2)若,,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据题目给出的体积计算方法,将几何体已知数据代入计算,求得几何体体积【题目详解】由题,刍童的体积为立方丈【题目点拨】本题考查几何体体积的计算,正确利用题目条件,弄清楚问题本质是关键2、A【解题分析】根据充分、必要条件的定义证明即可.【题目详解】因为函数在上单调递增,则,恒成立,即恒成立,,即.所以“”是“”的充分不必要条件.故选:A.3、C【解题分析】对分类讨论,将函数写成分段形式,利用对勾函数的单调性,逐一进行判断图象即可.【题目详解】,①当时,,图象如A选项;②当时,时,,在递减,在递增;时,,由,单调递减,所以在上单调递减,故图象为B;③当时,时,,可得,,在递增,即在递增,图象为D;故选:C.4、A【解题分析】,设,,令,把函数的图象向右平移个单位得到函数的图象.选A.5、D【解题分析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【题目详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【题目点拨】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理6、C【解题分析】详解】,即,选.7、D【解题分析】对于D:l1:y=ax+b,l2:y=bx-a.由l1可知a<0,b<0,对应l2也符合,8、D【解题分析】由分段函数可知必须每段有且只有1个零点,写出零点建立不等式组即可求解.【题目详解】因为时至多有一个零点,单调函数至多一个零点,而函数恰有个零点,所以需满足有1个零点,有1个零点,所以,解得,故选:D9、D【解题分析】全称命题的否定是特称命题,把任意改为存在,把结论否定.【题目详解】,都有的否定是,使得.故选:D10、B【解题分析】由已知利用同角三角函数基本关系式可求,的值,即可得解【题目详解】由题意,知,且,所以,则,故选B【题目点拨】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,其中解答中熟练应用同角三角函数的基本关系式,准确求解是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解题分析】先判断函数的奇偶性,由求解;再根据函数的单调性,由求解.【题目详解】因为的定义域为R,且,,所以是奇函数,又,则-2;因为在上是增函数,所以在上是增函数,又是R上的奇函数,所以在R上递增,且,所以由,得,即,所以,解得或,所以实数的取值范围是,故答案为:,12、【解题分析】分x小于等于0和x大于0两种情况根据分段函数分别得到f(x)的解析式,把得到的f(x)的解析式分别代入不等式得到两个一元二次不等式,分别求出各自的解集,求出两解集的并集即可得到原不等式的解集【题目详解】解:当x≤0时,f(x)=x+2,代入不等式得:x+2≥x2,即(x-2)(x+1)≤0,解得-1≤x≤2,所以原不等式的解集为[-1,0];当x>0时,f(x)=-x+2,代入不等式得:-x+2≥x2,即(x+2)(x-1)≤0,解得-2≤x≤1,所以原不等式的解集为[0,1],综上原不等式的解集为[-1,1].故答案为[-1,1]【题目点拨】此题考查了不等式的解法,考查了转化思想和分类讨论的思想,是一道基础题13、①②③④【解题分析】利用已知条件中数域的定义判断各命题的真假,题目给出了对两个实数的四种运算,要满足对四种运算的封闭,只有一一验证.【题目详解】①当时,由数域的定义可知,若,则有,即,,故①是真命题;②因为,若,则,则,,则2019,所以,故②是真命题;③,当且时,则,因此只要这个数不为就一定成对出现,所以有限数域的元素个数必为奇数,所以③是真命题;④若,则,且时,,故④是真命题;⑤当时,,所以偶数集不是一个数域,故⑤是假命题;故答案为:①②③④【题目点拨】关键点点睛:理解数域就是对加减乘除封闭的集合,是解题的关键,一定要读懂题目再入手,没有一个条件是多余的,是难题.14、【解题分析】首先根据函数的解析式确定,再利用换元法将函数在区间上有两个不同的零点的问题,转化为方程区间上有两个不同根的问题,由此列出不等式组解得答案.【题目详解】函数在区间上有两个不同的零点,则,故由可知:,当时,,显然不符合题意,故,又函数在区间上有两个不同的零点,等价于在区间上有两个不同的根,设,则函数在区间上有两个不同的根,等价于在区间上有两个不同的根,由得,要使区间上有两个不同的根,需满足a2-5a+1>06a故答案为:15、【解题分析】不等式的解集为{x|-1<x<2},可得-1,2是一元二次方程的两个实数根,且a<0,利用根与系数的关系可得a,b,即可得出【题目详解】解:∵不等式的解集为{x|-1<x<2},∴-1,2是一元二次方程的两个实数根,且a<0,解得解得a=-1,b=1.则不等式化为,解得.不等式的解集为.故答案为.【题目点拨】本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,考查了计算能力,属于中档题16、2【解题分析】设扇形的弧长为,半径为,则,将面积最值转化为一元二次函数的最值;【题目详解】设扇形的弧长为,半径为,则,,当时,扇形面积最大时,此时,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)77(2)【解题分析】(1)由已知可得甲、乙两组学生的人数分别为12、8,求得总分进而可得平均成绩.(2)方法一:由变形得,设甲组学生的测试成绩分别为,,,乙组学生的测试成绩分别为,,.根据方差公式计算可得,.计算求得20人的方差,进而得出标准差.方法二:直接使用权重公式计算即可得出结果.【小问1详解】由题知,甲、乙两组学生的人数分别为12、8,则这20名学生测试成绩的平均数,故可估计该样本校学生体能测试的平均成绩为77【小问2详解】方法一:由变形得,设甲组学生的测试成绩分别为,,,乙组学生的测试成绩分别为,,由甲组学生的测试成绩的方差,得由乙组学生的测试成绩的方差,得故这20名学生的测试成绩的方差所以(方法二)直接使用权重公式所以.18、(1).(2)倍.【解题分析】(1)由题知:,∴,∴,∴人听觉的声强级范围是.(2)设该女高音的声强级为,声强为,该男低音的声强级为,声强为,由题知:,则,∴,∴.故该女高音的声强是该男低音声强的倍.19、⑴⑵.【解题分析】(1)取中点,连接、,是二面角的平面角,进而求出此角度数即可;(2)利用等积法或割补法求体积.试题解析:⑴取中点,连接、,,,,且平面,平面,是二面角平面角.在直角三角形中,在直角三角形中,是等边三角形,⑵解法1:,又平面,平面平面,且平面平面在平面内作于,则平面,即是三棱锥的高.在等边中,,三棱锥的体积.解法2:平面在等边中,的面积,三棱锥的体积.20、(1)答案见解析(2)【解题分析】(1)根据复合函数的性质即可得到的值域;(2)令,求出其最小值,则问题转化为恒成立,进而求最小值即可.【小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论