重庆江津长寿巴县等七校2024届高一数学第一学期期末质量检测试题含解析_第1页
重庆江津长寿巴县等七校2024届高一数学第一学期期末质量检测试题含解析_第2页
重庆江津长寿巴县等七校2024届高一数学第一学期期末质量检测试题含解析_第3页
重庆江津长寿巴县等七校2024届高一数学第一学期期末质量检测试题含解析_第4页
重庆江津长寿巴县等七校2024届高一数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆江津长寿巴县等七校2024届高一数学第一学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的定义域是且满足如果对于,都有不等式的解集为A. B.C. D.2.若定义域为R的函数满足,且,,有,则的解集为()A. B.C. D.3.已知正三棱锥P—ABC(顶点在底面的射影是底面正三角形的中心)的侧面是顶角为30°腰长为2的等腰三角形,若过A的截面与棱PB,PC分别交于点D和点E,则截面△ADE周长的最小值是()A. B.2C. D.24.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()()A.1.5 B.1.2C.0.8 D.0.65.已知函数的部分图象如图所示,则将的图象向左平移个单位后,得到的图象对应的函数解析式为()A. B.C. D.6.下列说法中,正确的是()A.若,则B.函数与函数是同一个函数C.设点是角终边上的一点,则D.幂函数的图象过点,则7.设.若存在,使得,则的最小值是()A.2 B.C.3 D.8.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3 B.1C.-1 D.-39.已知函数,则该函数的零点位于区间()A. B.C. D.10.是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正实数,,且,若,则的值域为__________12.设函数,若实数满足,且,则的取值范围是_______________________13.已知函数部分图象如图所示,则函数的解析式为:____________14.已知函数,则函数零点的个数为_________15.若实数x,y满足,则的最小值为___________16.若,则的值为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点与原点重合,始边与轴的非负半轴重合,它的终边在直线上.(1)求的值;(2)求值18.已知函数;(1)若,使得成立,求的集合(2)已知函数的图象关于点对称,当时,.若对使得成立,求实数的取值范围19.已知.(Ⅰ)若,求的值;(Ⅱ)若为第三象限角,且,求的值.20.已知函数f(x)=m(1)若m=1,求fx(2)若方程fx=0有两个实数根x1,x2,且x21.已知函数,,(1)求的值;(2)求函数的单调递增区间;(3)求在区间上的最大值和最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】令x=,y=1,则有f()=f()+f(1),故f(1)=0;令x=,y=2,则有f(1)=f()+f(2),解得,f(2)=﹣1,令x=y=2,则有f(4)=f(2)+f(2)=﹣2;∵对于0<x<y,都有f(x)>f(y),∴函数f(x)是定义在(0,+∞)上的减函数,故f(﹣x)+f(3﹣x)≥﹣2可化为f(﹣x(3﹣x))≥f(4),故,解得,﹣1≤x<0.∴不等式的解集为故选D点睛:本题重点考查了抽象函数的性质及应用,的原型函数为的原型函数为,.2、A【解题分析】根据已知条件易得关于直线x=2对称且在上递减,再应用单调性、对称性求解不等式即可.【题目详解】由题设知:关于直线x=2对称且在上单调递减由,得:,所以,解得故选:A3、D【解题分析】可以将三棱锥侧面展开,将计算周长最小值转化成计算两点间距离最小值,解三角形,即可得出答案.【题目详解】将三棱锥的侧面展开,如图则将求截面周长的最小值,转化成计算的最短距离,结合题意可知=,,所以,故周长最小值为,故选D.【题目点拨】本道题目考查了解三角形的知识,可以将空间计算周长最小值转化层平面计算两点间的最小值,即可.4、C【解题分析】根据关系,当时,求出,再用指数表示,即可求解.【题目详解】由,当时,,则.故选:C.5、C【解题分析】根据给定图象求出函数的解析式,再平移,代入计算作答.【题目详解】观察图象得,令函数周期为,有,解得,则,而当时,,则有,又,则,因此,,将的图象向左平移个单位得:,所以将的图象向左平移个单位后,得到的图象对应的函数解析式为.故选:C6、D【解题分析】A选项,举出反例;B选项,两函数定义域不同;C选项,利用三角函数定义求解;D选项,待定系数法求出解析式,从而得到答案.【题目详解】A选项,当时,满足,而,故A错误;B选项,定义域为R,定义域为,两者不是同一个函数,B错误;C选项,,C错误;D选项,设,将代入得:,解得:,所以,D正确.故选:D7、D【解题分析】由题设在上存在一个增区间,结合、且,有必为的一个子区间,即可求的范围.【题目详解】由题设知:,,又,所以在上存在一个增区间,又,所以,根据题设知:必为的一个子区间,即,所以,即的最小值是.故选:D.【题目点拨】关键点点睛:结合题设条件判断出必为的一个子区间.8、D【解题分析】∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=3∴f(-1)=-f(1)=-3故选D9、B【解题分析】分别将选项中区间的端点代入,利用零点存在性定理判断即可【题目详解】由题,,,,所以,故选:B【题目点拨】本题考查利用零点存在性定理判断零点所在区间,属于基础题10、B【解题分析】设,,∴,,,∴.【考点】向量数量积【名师点睛】研究向量的数量积问题,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简.平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是将“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】因为,所以.因为且,.所以,所以,所以,.则的值域为.故答案为.12、【解题分析】结合图象确定a,b,c的关系,由此可得,再利用基本不等式求其最值.【题目详解】解:因为函数,若实数a,b,c满足,且,;如图:,且;令;因为;,当且仅当时取等号;,;故答案为:13、【解题分析】先根据图象得到振幅和周期,即求得,再根据图象过,求得,得到解析式.【题目详解】由图象可知,,故,即.又由图象过,故,解得,而,故,所以.故答案为:.14、【解题分析】解方程,即可得解.【题目详解】当时,由,可得(舍)或;当时,由,可得.综上所述,函数零点的个数为.故答案为:.15、【解题分析】由对数的运算性质可求出的值,再由基本不等式计算即可得答案【题目详解】由题意,得:,则(当且仅当时,取等号)故答案为:16、1或【解题分析】由诱导公式、二倍角公式变形计算【题目详解】,所以或,时,;时,故答案为:1或三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或;(2)或;【解题分析】(1)在直线上任取一点,由已知角的终边过点,利用诱导公式与三角函数定义即可求解,要注意分类讨论m的正负.(2)先利用商的关系化简原式为,结合第一问利用三角函数定义分别求得与,要注意分类讨论m的正负.【题目详解】(1)在直线上任取一点,由已知角的终边过点,,,利用诱导公式与三角函数定义可得:,当时,;当时,(2)原式同理(1)利用三角函数定义可得:,当时,,,此时原式;当时,,,此时原式;【题目点拨】易错点睛:本题考查三角函数化简求值,解本题时要注意的事项:角的终边在直线上,但未确定在象限,要分类讨论,考查学生的转化能力与运算解能力,属于中档题.18、(1)(2)【解题分析】(1)根据的值域列不等式,由此求得的取值范围.(2)先求得在时的值域,对进行分类讨论,由此求得的取值范围.【小问1详解】的值域为,所以,,,所以.所以的取值范围是.【小问2详解】由(1),当时,所以在时的值域为记函数的值域为.若对任意的,存在,使得成立,则因为时,,所以,即函数的图象过对称中心(i)当,即时,函数在上单调递增,由对称性知,在上单调递增,从而在上单调递增,由对称性得,则要使,只需,解得,所以,(ii)当,即时,函数在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减所以函数在上单调递减,在上单调递增,在上单调递减,,其中,要使,只需,解得,(iii)当,即时,函数在上单调递减,由对称性知,在上单调递减,从而在上单调递减.此时要使,只需,解得,综上可知,实数的取值范围是19、(Ⅰ);(Ⅱ).【解题分析】(Ⅰ)由诱导公式化简得,代入即可得解;(Ⅱ)由诱导公式可得,再由同角三角函数的平方关系可得,代入即可得解.【题目详解】(Ⅰ)由于,又,所以.(Ⅱ)因为,所以.又因为第三象限角,所以,所以.20、(1)x(2)mm<0或m>【解题分析】(1)根据题意,解不等式x2(2)由题知m≠0Δ=16m2【小问1详解】解:当m=1时,f(x)=x所以f(x)=x2+4x+3=所以fx≤0的解集为【小问2详解】解:因为方程fx=0有两个实数根x1所以m≠0Δ=16m2-12m≥0所以x1所以x12+x2综上,m的取值范围为mm<0或m>21、(1)1;(2)(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论