2024届贵州省遵义第四中学数学高一上期末调研模拟试题含解析_第1页
2024届贵州省遵义第四中学数学高一上期末调研模拟试题含解析_第2页
2024届贵州省遵义第四中学数学高一上期末调研模拟试题含解析_第3页
2024届贵州省遵义第四中学数学高一上期末调研模拟试题含解析_第4页
2024届贵州省遵义第四中学数学高一上期末调研模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省遵义第四中学数学高一上期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.三条直线,,相交于一点,则的值是A.-2 B.-1C.0 D.12.已知函数是定义在上的偶函数,对任意,都有,当时,,则A. B.C.1 D.3.若直线与直线垂直,则()A.6 B.4C. D.4.如图,在正三棱柱中,,若二面角的大小为,则点C到平面的距离为()A.1 B.C. D.5.已知实数,且,则的最小值是()A.6 B.C. D.6.已知一几何体的三视图,则它的体积为A. B.C. D.7.定义在上的函数,当时,,若,则、、的大小关系为()A. B.C. D.8.设命题,则为A. B.C. D.9.是定义在上的偶函数,在上单调递增,,,则下列不等式成立的是()A. B.C. D.10.对于空间两不同的直线,两不同的平面,有下列推理:(1),(2),(3)(4),(5)其中推理正确的序号为A.(1)(3)(4) B.(2)(3)(5)C.(4)(5) D.(2)(3)(4)(5)二、填空题:本大题共6小题,每小题5分,共30分。11.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若,则_________.12.设向量,若⊥,则实数的值为______13.已知角的终边经过点,则__14.已知,则__________15.已知向量,其中,若,则的值为_________.16.已知是定义在R上的偶函数,且在区间上单调递增.若实数满足,则的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,函数的图像与的图像关于对称.(1)求的值;(2)若函数在上有且仅有一个零点,求实数k取值范围;(3)是否存在实数m,使得函数在上的值域为,若存在,求出实数m的取值范围;若不存在,说明理由.18.计算:19.已知二次函数满足对任意,都有;;的图象与轴的两个交点之间的距离为.(1)求的解析式;(2)记,(i)若为单调函数,求的取值范围;(ii)记的最小值为,若方程有两个不等的根,求的取值范围.20.已知函数(1)求的最小正周期;(2)当时,求的单调区间;(3)在(2)的件下,求的最小值,以及取得最小值时相应自变量x的取值.21.(1)计算:.(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】联立两条已知直线求得交点坐标,待定系数即可求得参数值.【题目详解】联立与可得交点坐标为,又其满足直线,故可得,解得.故选:.2、C【解题分析】由题意,故选C3、A【解题分析】由两条直线垂直的条件可得答案.【题目详解】由题意可知,即故选:A.4、C【解题分析】取的中点,连接和,由二面角的定义得出,可得出、、的值,由此可计算出和的面积,然后利用三棱锥的体积三棱锥的体积相等,计算出点到平面的距离.【题目详解】取的中点,连接和,根据二面角的定义,.由题意得,所以,.设到平面的距离为,易知三棱锥的体积三棱锥的体积相等,即,解得,故点C到平面的距离为.故选C.【题目点拨】本题考查点到平面距离的计算,常用的方法有等体积法与空间向量法,等体积法本质就是转化为三棱锥的高来求解,考查计算能力与推理能力,属于中等题.5、B【解题分析】构造,利用均值不等式即得解【题目详解】,当且仅当,即,时等号成立故选:B【题目点拨】本题考查了均值不等式在最值问题中的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题6、C【解题分析】所求体积,故选C.7、C【解题分析】令,求得,得到是奇函数,再令,证得在上递减判断.【题目详解】因为,令,得,解得,令,得,所以是奇函数,因时,,则,,令,则,,且,则,,所以,即,即,所以在上递减,,因为,所以,故选:C8、C【解题分析】特称命题否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.9、C【解题分析】根据对数的运算法则,得到,结合偶函数的定义以及对数函数的单调性,得到自变量的大小,根据函数在上的单调性,得到函数值的大小,得到选项.【题目详解】,而,因为是定义在上的偶函数,且在上单调递增,所以,所以,故选:C.10、C【解题分析】因为时,可以在平面内,所以(1)不正确;因为时,可以在平面内,所以(2)不正确;因为时可以在平面内,所以(3)不正确;根据线面垂直的性质定理可得,(4)正确;根据线面平行的性质及线面垂直的性质可得(5)正确,推理正确的序号为(4)(5),故选C.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定与性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用同角的基本关系式,可得,代入所求,结合辅助角公式,即可求解【题目详解】因为,,所以,所以,故答案为【题目点拨】本题考查同角三角函数的基本关系式,辅助角公式,考查计算化简的能力,属基础题12、【解题分析】∵,∴,,又⊥∴∴故答案为13、【解题分析】根据终边上的点可得,再应用差角正弦公式求目标式的值.【题目详解】由题设,,所以.故答案为:.14、【解题分析】将题干中的两个等式先平方再相加,利用两角差的余弦公式可求得结果.【题目详解】由,,两式相加有,可得故答案为:.15、4【解题分析】利用向量共线定理即可得出【题目详解】∵∥,∴=8,解得,其中,故答案为【题目点拨】本题考查了向量共线定理,考查了向量的坐标运算,属于基础题16、【解题分析】由题意在上单调递减,又是偶函数,则不等式可化为,则,,解得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或(3)存在,【解题分析】(1)由题意,将代入可得答案.(2)由题意即关于x的方程在上有且仅有一个实根,设,作出其函数图像,数形结合可得答案.(3)设记,则函数在上单调递增,根据题意若存在实数m满足条件,则a,b是方程的两个不等正根,由二次方程的根的分布的条件可得答案.【小问1详解】由题意,,所以【小问2详解】由题意即关于x的方程在上有且仅有一个实根,设,作出函数在上的图像(如下图),,由题意,直线与该图像有且仅有一个公共点,所以实数k的取值范围是或【小问3详解】记,其中,在定义域上单调递增,则函数在上单调递增,若存在实数m,使得的值域为,则,即a,b是方程的两个不等正根,即a,b是的两个不等正根,所以解得,所以实数m的取值范围是.【题目点拨】思路点睛:函数的零点问题可转化为两个熟悉函数的图象的交点问题来处理,而二次方程的零点问题,可结合判别式的正负、特殊点处的函数值的正负、对称轴的位置等来处理.18、109【解题分析】化根式为分数指数幂,运用有理数指数幂的运算性质化简可求出值.【题目详解】原式=()6+1=22×33+2﹣1=108+2﹣1=109【题目点拨】本题考查根式的概念,将根式化为分数指数幂和其运算法则的应用,属于基础题.19、(1);(2)(i);(ii)或.【解题分析】(1)根据二次函数的对称轴、求参数a、b、c,写出的解析式;(2)(i)利用二次函数的性质,结合的区间单调性求的取值范围;(ii)讨论、、,结合二次函数的性质求最小值的表达式,再令并应用数形结合的方法研究的零点情况求的取值范围.【题目详解】(1)设由题意知:对称轴,,又,则,,设的两根为,,则,,由已知:,解得.(2)(i),其对称轴为为单调函数,或,解得或.的取值范围是.(ii),,对称轴①当,即时,区间单调递增,.②当,即时,在区间单调递减,③当,即时,,函数零点即为方程的根令,即,作出的简图如图所示①当时,,或,解得或,有个零点;②当时,有唯一解,解得,有个零点;③当时,有两个不同解,,解得或,有4个零点;④当时,,,解得,有个零点;⑤当时,无解,无零点综上:当或时,有个零点.【题目点拨】关键点点睛:第二问,(i)分类讨论并结合二次函数区间单调性求参数范围,(ii)分类讨论求最小值的表达式,再应用换元法及数形结合求参数范围.20、(1)(2)的单调递增区间为,单调递减区间为(3)当时,的最小值为0【解题分析】(1)根据周期公式计算即可.(2)求出单调区间,然后与所给的范围取交集即可.(3)根据(2)的结论,对与进行比较即可.【小问1详解】,,故的最小正周期为.【小问2详解】先求出增区

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论