版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅州市蕉岭中学2024届数学高一上期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角的终边经过点,且,则()A. B.C. D.2.下列大小关系正确的是A. B.C. D.3.已知关于的方程在区间上存在两个不同的实数根,则实数的取值范围是()A. B.C. D.4.函数的定义域是()A.(-1,1) B.C.(0,1) D.5.已知函数则()A.- B.2C.4 D.116.已知,若,则x的取值范围为()A. B.C. D.7.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013141513129第3组的频数和频率分别是()A.和14 B.14和C.和24 D.24和8.(程序如下图)程序的输出结果为A.3,4 B.7,7C.7,8 D.7,119.设四边形为平行四边形,,若点满足,,则A. B.C. D.10.已知函数,则,则A. B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________.12.函数的最小正周期是________.13.已知命题“,”是真命题,则实数的取值范围为__________14.若正实数满足,则的最大值是________15.已知幂函数f(x)的图象过点(4,2),则f=________.16.已知函数f(x)=①f(5)=______;②函数f(x)与函数y=(三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)若是定义在上的偶函数,求实数的值;(2)在(1)条件下,若,求函数的零点18.求函数的定义域、值域与单调区间;19.如图,在三棱柱中,侧棱⊥底面,,分别为棱的中点(1)求证:;(2)若求三棱锥的体积20.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间”.(1)先判断“函数没有“和谐区间”是否正确,再写出函数“和谐区间”;(2)若是定义在上的奇函数,当时,.(i)求的“和谐区间”;(ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由.21.已知函数.(1)求函数的单调区间;(2)若函数在有且仅有两个零点,求实数取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】利用三角函数的定义可求得的值,再利用三角函数的定义可求得的值.【题目详解】由三角函数的定义可得,则,解得,因此,.故选:A.2、C【解题分析】根据题意,由于那么根据与0,1的大小关系比较可知结论为,选C.考点:指数函数与对数函数的值域点评:主要是利用指数函数和对数函数的性质来比较大小,属于基础题3、C【解题分析】本题首先可根据方程存在两个不同的实数根得出、,然后设,分为、两种情况进行讨论,最后根据对称轴的相关性质以及的大小即可得出结果.【题目详解】因为方程存在两个不同的实数根,所以,,解得或,设,对称轴为,当时,因为两个不同实数根在区间上,所以,即,解得,当时,因为两个不同的实数根在区间上,所以,即,解得,综上所述,实数的取值范围是,故选:C.4、B【解题分析】根据函数的特征,建立不等式求解即可.【题目详解】要使有意义,则,所以函数的定义域是.故选:B5、C【解题分析】根据分段函数的分段条件,先求得,进而求得的值,得到答案.【题目详解】由题意,函数,可得,所以.故选:C.【题目点拨】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的分段条件,代入准确运算是解答的关键,着重考查运算与求解能力.6、C【解题分析】首先判断函数的单调性和定义域,再解抽象不等式.【题目详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【题目点拨】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.7、B【解题分析】根据样本容量和其它各组的频数,即可求得答案.【题目详解】由题意可得:第3组频数为,故第3组的频率为,故选:B8、D【解题分析】∵变量初始值X=3,Y=4,∴根据X=X+Y得输出的X=7.又∵Y=X+Y,∴输出的Y=11.故选D.9、D【解题分析】令,则,,故选D10、B【解题分析】因为,所以,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求得长方体外接球的半径,从而求得球的表面积.【题目详解】由题知,球O的半径为,则球O的表面积为故答案为:12、【解题分析】直接利用三角函数的周期公式,求出函数的周期即可.【题目详解】函数中,.故答案为:【题目点拨】本题考查三角函数的周期公式的应用,是基础题.13、【解题分析】此题实质上是二次不等式的恒成立问题,因为,函数的图象抛物线开口向上,所以只要判别式不大于0即可【题目详解】解:因为命题“,”是真命题,所以不等式在上恒成立由函数的图象是一条开口向上的抛物线可知,判别式即解得所以实数的取值范围是故答案为:【题目点拨】本题主要考查全称命题或存在性命题的真假及应用,解题要注意的范围,如果,一定要注意数形结合;还应注意条件改为假命题,有时考虑它的否定是真命题,求出的范围.本题是一道基础题14、4【解题分析】由基本不等式及正实数、满足,可得的最大值.【题目详解】由基本不等式,可得正实数、满足,,可得,当且仅当时等号成立,故的最大值为,故答案为:4.15、【解题分析】根据图象过点的坐标,求得幂函数解析式,再代值求得函数值即可.【题目详解】设幂函数为y=xα(α为常数).∵函数f(x)的图象过点(4,2),∴2=4α,∴α=,∴f(x)=,∴f=.故答案为:.【题目点拨】本题考查幂函数解析式的求解,以及幂函数函数值的求解,属综合简单题.16、①.-14【解题分析】①根据函数解析式,代值求解即可;②在同一直角坐标系中画出两个函数的图象,即可数形结合求得结果.【题目详解】①由题可知:f5②根据f(x)的解析式,在同一坐标系下绘制f(x)与y=(数形结合可知,两个函数有3个交点.故答案为:-14;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)有两个零点,分别为和【解题分析】(1)由函数为偶函数得即可求实数的值;(2),计算令,则即可.试题解析:(1)解:∵是定义在上的偶函数.∴,即故.经检验满足题意(2)依题意.则由,得,令,则解得.即.∴函数有两个零点,分别为和.18、定义域为,值域为,递减区间为,递增区间为.【解题分析】由函数的解析式有意义列出不等式,可求得其定义域,由,结合基本不等式,可求得函数的值域,令,根据对勾函数的性质和复合函数的单调性的判定方法,可求得函数的单调区间.【题目详解】由题意,函数有意义,则满足且,因为方程,所以,解得,所以函数的定义域为又由,因为,所以,当且仅当时,即时,等号成立,所以,所以函数的值域为,令,根据对勾函数的性质,可得函数在区间上单调递减,在上单调递增,结合复合函数的单调性的判定方法,可得在上单调递减,在上单调递增.19、(1)见解析;(2).【解题分析】(1)可证平面,从而得到.(2)取的中点为,连接,可证平面,故可求三棱锥的体积【题目详解】(1)因为侧棱⊥底面,平面,所以,因为为中点,,故,而,故平面,而平面,故.(2)取的中点为,连接.因为,故,故,因为,故,且,故,因为三棱柱中,侧棱⊥底面,故三棱柱为直棱柱,故⊥底面,因为底面,故,而,故平面,而,故.【题目点拨】思路点睛:线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化.又三棱锥的体积的计算需选择合适的顶点和底面,此时顶点到底面的距离容易计算.20、(1)正确,;(2)(i)和,(ii)存在符合题意,理由见解析.【解题分析】(1)根据和谐区间的定义判断两个函数即可;(2)(i)根据是奇函数求出的解析式,再利用“和谐区间”的定义求出的“和谐区间”,(ii)由(i)可得的解析式,由与都是奇函数,问题转化为与的图象在第一象限内有一个交点,由单调性求出的端点坐标,代入可得临界值即可求解.【小问1详解】函数定义域为,且为奇函数,当时,单调递减,任意的,则,所以时,没有“和谐区间”,同理时,没有“和谐区间”,所以“函数没有“和谐区间”是正确的,在上单调递减,所以在上单调递减,所以值域为,即,所以,所以,是方程的两根,因为,解得,所以函数的“和谐区间”为.【小问2详解】(i)因为当时,所以当时,,所以因为是定义在上的奇函数,所以,所以当时,,可得,设,因为在上单调递减,所以,,所以,,所以,是方程的两个不相等的正数根,即,是方程的两个不相等的正数根,且,所以,,所以在区间上的“和谐区间”是,同理可得,在区间上的“和谐区间”是.所以的“和谐区间”是和,(ii)存在,理由如下:因为函数的图象是以在定义域内所有“和谐区间”上的图象,所以若集合恰含有个元素,等价于函数与函数的图象有两个交点,且一个交点在第一象限,一个交点在第三象限.因为与都是奇函数,所以只需考虑与的图象在第一象限内有一个交点.因为在区间上单调递减,所以曲线的两个端点为,.因为,所以的零点是,,或所以当的图象过点时,,;当图象过点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论