江西省赣州市十五县2024届高一数学第一学期期末达标检测模拟试题含解析_第1页
江西省赣州市十五县2024届高一数学第一学期期末达标检测模拟试题含解析_第2页
江西省赣州市十五县2024届高一数学第一学期期末达标检测模拟试题含解析_第3页
江西省赣州市十五县2024届高一数学第一学期期末达标检测模拟试题含解析_第4页
江西省赣州市十五县2024届高一数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省赣州市十五县2024届高一数学第一学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.三个数20.3,0.32,log0.32的大小顺序是A.0.32<log0.32<20.3 B.0.32<20.3<log0.32C.log0.32<20.3<0.32 D.log0.32<0.32<20.32.两平行直线l1:3x+2y+1=0与l2:6mx+4y+m=0之间的距离为A.0 B.C. D.3.已知定义在R上的函数是奇函数且满足,,数列满足,且,(其中为的前n项和).则A.3 B.C. D.24.某几何体的三视图如图所示,则它的体积是A.B.C.D.5.已知函数可表示为()xy2345则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增6.30°的弧度数为()A. B.C. D.7.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.8.已知,则的值是A.1 B.3C. D.9.给定四个函数:①;②();③;④.其中是奇函数的有()A.1个 B.2个C.3个 D.4个10.已知,,则的值约为(精确到)()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设是R上的奇函数,且当时,,则__________12.如图,已知四棱锥P-ABCD,底面ABCD为正方形,PA⊥平面ABCD.给出下列命题:①PB⊥AC;②平面PAB与平面PCD的交线与AB平行;③平面PBD⊥平面PAC;④△PCD为锐角三角形.其中正确命题的序号是________13.已知集合,,则_________.14.已知,,则____________15.函数的图像与直线y=a在(0,)上有三个交点,其横坐标分别为,,,则的取值范围为_______.16._____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数求:的最小正周期;的单调增区间;在上的值域18.已知,,函数,(1)若,,求的值;(2)若不等式对任意恒成立,求的取值范围19.如图,四棱锥中,底面为矩形,面,为的中点(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离20.如图,在直三棱柱ABC-A1B1C1中,三角形ABC为等腰直角三角形,AC=BC=2(1)求证:AC1//(2)二面角B121.已知函数,(1)求函数的最大值及取得最大值时的值;(2)若方程在上的解为,,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】由已知得:,,,所以.故选D.考点:指数函数和对数函数的图像和性质.2、C【解题分析】根据两平行直线的系数之间的关系求出,把两直线的方程中的系数化为相同的,然后利用两平行直线间的距离公式,求得结果.【题目详解】直线l1与l2平行,所以,解得,所以直线l2的方程为:,直线:即,与直线:的距离为:.故选:C【题目点拨】本题考查直线平行的充要条件,两平行直线间的距离公式,注意系数必须统一,属于基础题.3、A【解题分析】由奇函数满足可知该函数是周期为的奇函数,由递推关系可得:,两式做差有:,即,即数列构成首项为,公比为的等比数列,故:,综上有:,,则:.本题选择A选项.4、A【解题分析】根据已知的三视图想象出空间几何体,然后由几何体的组成和有关几何体体积公式进行计算由几何体的三视图可知几何体为一个组合体,即一个正方体中间去掉一个圆锥体,所以它的体积是.5、B【解题分析】根据给定的对应值表,逐一分析各选项即可判断作答.【题目详解】由给定的对应值表知:,则,A不正确;函数的值域是,B正确,C不正确;当时,,即在区间上不单调,D不正确.故选:B6、B【解题分析】根据弧度与角度之间的转化关系进行转化即可.详解】解:,故选.【题目点拨】本题考查了将角度制化为弧度制,属于基础题.7、D【解题分析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案8、D【解题分析】由题意结合对数的运算法则确定的值即可.【题目详解】由题意可得:,则本题选择D选项.【题目点拨】本题主要考查指数对数互化,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.9、B【解题分析】首先求出函数的定义域,再由函数的奇偶性定义即可求解.【题目详解】①函数的定义域为,且,,则函数是奇函数;②函数的定义域关于原点不对称,则函数()为非奇非偶函数;③函数的定义域为,,则函数不是奇函数;④函数的定义域为,,则函数是奇函数.故选:B10、B【解题分析】利用对数的运算性质将化为和的形式,代入和的值即可得解.【题目详解】.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由函数的性质得,代入当时的解析式求出的值,即可得解.【题目详解】当时,,,是上的奇函数,故答案为:12、②③【解题分析】设AC∩BD=O,由题意证明AC⊥PO,由已知可得AC⊥PA,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾说明①错误;由线面平行的判定和性质说明②正确;由线面垂直的判定和性质说明③正确;由勾股定理即可判断,说明④错误【题目详解】设AC∩BD=O,如图,①若PB⊥AC,∵AC⊥BD,则AC⊥平面PBD,∴AC⊥PO,又PA⊥平面ABCD,则AC⊥PA,在平面PAC内过P有两条直线与AC垂直,与在同一平面内过一点有且只有一条直线与已知直线垂直矛盾,①错误;②∵CD∥AB,则CD∥平面PAB,∴平面PAB与平面PCD的交线与AB平行,②正确;③∵PA⊥平面ABCD,∴平面PAC⊥平面ABCD,又BD⊥AC,∴BD⊥平面PAC,则平面PBD⊥平面PAC,③正确;④∵PD2=PA2+AD2,PC2=PA2+AC2,AC2=AD2+CD2,AD=CD,∴PD2+CD2=PC2,∴④△PCD为直角三角形,④错误,故答案为:②③13、【解题分析】由对数函数单调性,求出集合A,再根据交集的定义即可求解.【题目详解】解:,,,故答案为:.14、【解题分析】,,考点:三角恒等变换15、【解题分析】由x∈(0,)求出,然后,画出正弦函数的大致图像,利用图像求解即可【题目详解】由题意因为x∈(0,),则,可画出函数大致的图则由图可知当时,方程有三个根,由解得,解得,且点与点关于直线对称,所以,点与点关于直线对称,故由图得,令,当为x∈(0,)时,解得或,所以,,,解得,,则,即.故答案为:【题目点拨】关键点睛:解题关键在于利用x∈(0,),则画出图像,并利用对称性求出答案16、【解题分析】利用诱导公式变形,再由两角和的余弦求解【题目详解】解:,故答案为【题目点拨】本题考查诱导公式的应用,考查两角和的余弦,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2),;(3).【解题分析】利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论;利用正弦函数的单调性,求得的单调增区间;利用正弦函数的定义域和值域,求得在上的值域【题目详解】函数,故函数的最小正周期为.令,求得,可得函数的增区间为,在上,,,,即的值域为【题目点拨】本题主要考查三角恒等变换,正弦函数的周期性,单调性,定义域和值域,属于中档题.单调性:根据y=sint和t=的单调性来研究,由得单调增区间;由得单调减区间.18、(1)(2)见解析.【解题分析】(1)利用同角三角函数基本关系式进行求解;(2)作差,分离参数,将问题转化为求函数的最值问题,再利用换元思想进行求解.试题解析:(1)依题意得,,即,即由,,得,(2)即不等式对任意恒成立,即下求函数的最小值令则且令1°当上单调递增,2°当,即时,3°当4°当,所以当时,;当或0<时,19、(1)证明见解析(2)到平面的距离为【解题分析】(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离20、(1)见解析(2)45°【解题分析】1设BC1∩B1C=E,连接ED,则2推导出CD⊥AB,BB1⊥CD,从而CD⊥平面ABB1A1,进而CD⊥B1解析:(1)在直三棱柱ABC-A1B则E为BC1的中点,连接∵D为AB的中点,∴ED//AC,又∵ED⊂平面CDB1,AC∴AC1//(2)∵ΔABC中,AC=BC,D为AB中点,∴CD⊥AB,又∵BB1⊥平面ABC,CD⊂∴BB1⊥CD,又AB∩BB1∵B1D⊂平面ABB1A1,AB⊂平面∴∠B1DB∵ΔABC中,AB=2,∴BD=1,RtΔB1B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论