2024届湖南省洞口县高一上数学期末质量跟踪监视试题含解析_第1页
2024届湖南省洞口县高一上数学期末质量跟踪监视试题含解析_第2页
2024届湖南省洞口县高一上数学期末质量跟踪监视试题含解析_第3页
2024届湖南省洞口县高一上数学期末质量跟踪监视试题含解析_第4页
2024届湖南省洞口县高一上数学期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省洞口县高一上数学期末质量跟踪监视试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果直线和函数的图象恒过同一个定点,且该定点始终落在圆的内部或圆上,那么的取值范围是()A. B.C. D.2.设,则“”是“”的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件3.如图,①②③④中不属于函数,,的一个是()A.① B.②C.③ D.④4.函数f(x)=的定义域为()A.(2,+∞) B.(0,2)C.(-∞,2) D.(0,)5.已知,且满足,则值A. B.C. D.6.函数的定义域为,且为奇函数,当时,,则函数的所有零点之和是()A.2 B.4C.6 D.87.已知直线与直线平行,则的值为A.1 B.3C.-1或3 D.-1或18.已知函数的最小正周期为π,且关于中心对称,则下列结论正确的是()A. B.C D.9.化简

的值为A. B.C. D.10.已知偶函数在区间单调递减,则满足的x取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象向左平移个单位长度得到函数的图象,若使得,且的最小值为,则_________.12.意大利画家达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的“悬链线问题”.双曲余弦函数,就是一种特殊的悬链线函数,其函数表达式为,相应的双曲正弦函数的表达式为.设函数,若实数m满足不等式,则m的取值范围为___________.13.已知函数在一个周期内的图象如图所示,图中,,则___________.14.计算:___________.15.已知某扇形的弧长为,面积为,则该扇形的圆心角(正角)为_________.16.函数的定义域是________________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)判断并说明函数的奇偶性;(2)若关于的不等式恒成立,求实数的取值范围18.设函数f(x)=k⋅2x-(1)求k的值;(2)若不等式f(x)>a⋅2x-1(3)设g(x)=4x+4-x-4f(x),求19.在某单位的食堂中,食堂每天以元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂某天购进了80斤米粉,以(单位:斤)(其中)表示米粉的需求量,(单位:元)表示利润.(Ⅰ)计算当天米粉需求量的平均数,并直接写出需求量的众数和中位数;(Ⅱ)将表示为的函数;(Ⅲ)根据直方图估计该天食堂利润不少于760元的概率.20.已知二次函数.若当时,的最大值为4,求实数的值.21.某生物研究者于元旦在湖中放入一些凤眼莲,这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲覆盖面积为24m2,三月底测得覆盖面积为36m2,凤眼莲覆盖面积y(单位:m2)与月份x(单位:月)的关系有两个函数模型与可供选择(1)试判断哪个函数模型更合适,并求出该模型的解析式;(2)求凤眼莲覆盖面积是元旦放入面积10倍以上的最小月份(参考数据:lg2≈03010,lg3≈0.4771)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由已知可得.再由由点在圆内部或圆上可得.由此可解得点在以和为端点的线段上运动.由表示以和为端点的线段上的点与坐标原点连线的斜率可得选项【题目详解】函数恒过定点.将点代入直线可得,即由点在圆内部或圆上可得,即.或.所以点在以和为端点的线段上运动表示以和为端点的线段上的点与坐标原点连线的斜率.所以,.所以故选:C【题目点拨】关键点点睛:解决本题类型的问题,关键在于由已知条件得出所满足的可行域,以及明确所表示的几何意义.2、C【解题分析】根据一元二次不等式的解法,结合充分性、必要性的定义进行判断即可.【题目详解】由,由不一定能推出,但是由一定能推出,所以“”是“”的必要不充分条件,故选:C3、B【解题分析】根据对数函数图象特征及与图象的关于轴对称即可求解.【题目详解】解:由对数函数图象特征及与的图象关于轴对称,可确定②不已知函数图象.故选:B.4、B【解题分析】列不等式求解【题目详解】,解得故选:B5、C【解题分析】由可求得,然后将经三角变换后用表示,于是可得所求【题目详解】∵,∴,解得或∵,∴∴故选C【题目点拨】对于给值求值的问题,解答时注意将条件和所求值的式子进行适当的化简,然后合理地运用条件达到求解的目的,解题的关键进行三角恒等变换,考查变换转化能力和运算能力6、B【解题分析】根据题意可知图象关于点中心对称,由的解析式求出时的零点,根据对称性即可求出时的零点,即可求解.【题目详解】因为为奇函数,所以函数的图象关于点中心对称,将的图象向右平移个单位可得的图象,所以图象关于点中心对称,当时,,令解得:或,因为函数图象关于点中心对称,则当时,有两解,为或,所以函数的所有零点之和是,故选:B第II卷(非选择题7、A【解题分析】因为两条直线平行,所以:解得m=1故选A.点睛:本题主要考查直线的方程,两条直线平行与斜率的关系,属于简单题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1),需检验不重合;(2),这类问题尽管简单却容易出错,特别是容易遗忘斜率不存在的情况,这一点一定不能掉以轻心.8、B【解题分析】根据周期性和对称性求得函数解析式,再利用函数单调性即可比较函数值大小.【题目详解】根据的最小正周期为,故可得,解得.又其关于中心对称,故可得,又,故可得.则.令,解得.故在单调递增.又,且都在区间中,且,故可得.故选:.【题目点拨】本题考查由三角函数的性质求解析式,以及利用三角函数的单调性比较函数值大小,属综合基础题.9、C【解题分析】根据两角和的余弦公式可得:,故答案为C.10、D【解题分析】根据题意,结合函数的奇偶性与单调性分析可得,解不等式可得x的取值范围,即可得答案【题目详解】根据题意,偶函数在区间单调递减,则在上为增函数,则,解可得:,即x的取值范围是;故选D【题目点拨】本题考查函数奇偶性与单调性综合应用,注意将转化为关于x不等式,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据三角函数的图形变换,求得,根据,不妨设,求得,,得到则,根据题意得到,即可求解.【题目详解】将函数的图象向左平移个单位长度,可得,又由,不妨设,由,解得,即,又由,解得,即则,因为的最小值为,可得,解得或,因为,所以.故答案为:12、【解题分析】先判断为奇函数,且在R上为增函数,然后将转化为,从而有,进而可求出m的取值范围【题目详解】由题意可知,的定义域为R,因为,所以为奇函数.因为,且在R上为减函数,所以由复合函数的单调性可知在R上为增函数.又,所以,所以,解得.故答案为:.13、【解题分析】根据图象和已知信息求出的解析式,代值计算可得的值.【题目详解】由已知可得,在处附近单调递增,且,故,又因为点是函数在轴右侧的第一个对称中心,所以,,可得,故,因此,.故答案为:.14、7【解题分析】直接利用对数的运算法则以及指数幂的运算法则化简即可.【题目详解】.故答案为:7.15、【解题分析】根据给定条件求出扇形所在圆的半径即可计算作答.【题目详解】设扇形所在圆的半径为,扇形弧长为,即,由扇形面积得:,解得,所以该扇形的圆心角(正角)为.故答案为:16、,【解题分析】根据题意由于有意义,则可知,结合正弦函数的性质可知,函数定义域,,,故可知答案为,,,考点:三角函数性质点评:主要是考查了三角函数的性质的运用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)为奇函数(2)【解题分析】(1)利用函数的奇偶性判断即可;(2)由(1)知为奇函数且单调递增,将不等式恒成立分离参数,利用基本不等式解得即可.【题目详解】(1)函数的定义域为,,所以为奇函数.(2)由(1)知奇函数且定义域为,易证在上单调递增,所以不等式恒成立,转化,即对恒成立,所以对恒成立,即,因,则,所以,即,所以,故实数的取值范围为.【题目点拨】本题考查函数奇偶性的定义,以及利用奇偶性,单调性解不等式恒成立问题,属于中档题.18、(1)1;(2)a<54;(3)最小值-2,此时x=【解题分析】(1)根据题意可得f0=0,即可求得(2)f(x)>a⋅2x-1(3)由题意g(x)=4x+4-x-42x-【题目详解】(1)因为f(x)=k⋅2x-所以f0=0,所以k-1=0,解得所以f(x)=2当k=1时,f(-x)=2所以fx为奇函数,故k=1(2)f(x)>a⋅2x-1所以只需a<-因为-12x所以a<5(3)因为g(x)=4x+可令t=2x-2-x,可得函数t则t2=4x+由ht为开口向上,对称轴为t=2>所以t=2时,ht取得最小值-2此时2=2x-所以gx在1,+∞上的最小值为-2,此时【题目点拨】解题的关键熟练掌握二次函数的图象与性质,并灵活应用,处理存在性问题时,若a<m(x),只需a<m(x)max,若a>m(x),只需a>m(x)min,处理恒成立问题时,若a<m(x),只需a<m(x)19、(1)平均数为75.5,众数为75,中位数为75.(2).(3)该天食堂利润不少于760元的概率为0.65.【解题分析】由频率分布直方图的数值计算可得平均数,众数,中位数由题意,当时,求出利润,当时,求出利润,由此能求出关于的函数解析式设利润不少于元为事件,利润不少于元时,即,再根据直方图利用概率计算公式求出对应的概率【题目详解】(Ⅰ)由频率分布直方图知,故中位数位于(70.,80)设为x,则(x-70)所以平均数为75.5,众数为75,中位数为75.(Ⅱ)一斤米粉的售价是元.当时,当时,故(Ⅲ)设利润不少于760元为事件,利润不少于760元时,即.解得,即.由直方图可知,当时,故该天食堂利润不少于760元的概率为0.65.【题目点拨】本题主要考查了样本估计总体和事件与概率,只要能读懂条形统计图,然后进行计算即可,较为基础20、或.【解题分析】分函数的对称轴和两种情况,分别建立方程,解之可得答案.【题目详解】二次函数的对称轴为直线,当,即时,当时,取得最大值4,,解得,满

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论