岳阳市重点中学2024届高一数学第一学期期末综合测试模拟试题含解析_第1页
岳阳市重点中学2024届高一数学第一学期期末综合测试模拟试题含解析_第2页
岳阳市重点中学2024届高一数学第一学期期末综合测试模拟试题含解析_第3页
岳阳市重点中学2024届高一数学第一学期期末综合测试模拟试题含解析_第4页
岳阳市重点中学2024届高一数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

岳阳市重点中学2024届高一数学第一学期期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A. B.C. D.2.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R3.将函数的图象向左平移个单位长度,再向上平移1个单位长度,得到的图象,若,且,则的最大值为A. B.C. D.4.若均大于零,且,则的最小值为()A. B.C. D.5.函数在区间上的最大值是A.1 B.C. D.1+6.已知函数,,若存在,使得,则实数的取值范围是()A. B.C. D.7.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,,则当x<0时,f(x)的表达式是A. B.C. D.8.若∃x∈[0,3],使得不等式x2﹣2x+a≥0成立,则实数a的取值范围是()A.﹣3≤a≤0 B.a≥0C.a≥1 D.a≥﹣39.将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,这样的分割被称为黄金分割,黄金分割蕴藏着丰富的数学知识和美学价值,被广泛运用于艺术创作、工艺设计等领域.黄金分制的比值为无理数,该值恰好等于,则()A. B.C. D.10.下列四组函数中,表示同一函数的一组是()A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.函数的定义域为________.12.函数的单调递减区间为__13.在直角坐标系中,直线的倾斜角________14.已知,则的值为______15.函数f(x)=log2(x2-5),则f(3)=______16.函数中角的终边经过点,若时,的最小值为.(1)求函数的解析式;(2)求函数的单调递增区间.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义在(-1,1)上的奇函数为减函数,且,求实数a的取值范围.18.计算下列各式的值:(1)lg2(2)sin19.已知函数的图象相邻两条对称轴之间的距离为.(1)当时,求函数的最大值和最小值;(2)将函数的图象向左平移个单位后得到函数的图象,若为偶函数,求的值.20.已知函数的值域为,函数.(Ⅰ)求;(Ⅱ)当时,若函数有零点,求的取值范围,并讨论零点的个数.21.甲、乙、丙三人打靶,他们的命中率分别为,若三人同时射击一个目标,甲、丙击中目标而乙没有击中目标的概率为,乙击中目标而丙没有击中目标的概率为.设事件A表示“甲击中目标”,事件B表示“乙击中目标”,事件C表示“丙击中目标”.已知A,B,C是相互独立事件.(1)求;(2)写出事件包含的所有互斥事件,并求事件发生的概率.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】如图所示,补成直四棱柱,则所求角为,易得,因此,故选C平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围2、A【解题分析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理3、A【解题分析】分析:利用三角函数的图象变换,可得,由可得,取,取即可得结果.详解:的图象向左平移个单位长度,再向上平移1个单位长度,得到,,且,,,因为,所以时,取为最小值;时,取为最大值最大值为,故选A.点睛:本题主要考查三角函数图象的变换以及三角函数的性质,属于中档题.能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.4、D【解题分析】由题可得,利用基本不等式可求得.【题目详解】均大于零,且,,当且仅当,即时等号成立,故的最小值为.故选:D.【题目点拨】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、C【解题分析】由,故选C.6、D【解题分析】根据条件求出两个函数在上的值域,结合若存在,使得,等价为两个集合有公共元素,然后根据集合关系进行求解即可【题目详解】当时,,即,则的值域为[0,1],当时,,则的值域为,因为存在,使得,则若,则或,得或,则当时,,即实数a的取值范围是,A,B,C错,D对.故选:D7、A【解题分析】由题意得,当时,则,当时,,所以,又因为函数是定义在上的奇函数,所以,故选A考点:函数的奇偶性的应用;函数的表达式8、D【解题分析】等价于二次函数的最大值不小于零,即可求出答案.【题目详解】设,,使得不等式成立,须,即,或,解得.故选:D【题目点拨】本题考查特称命题成立求参数的问题,等价转化是解题的关键,属于基础题.9、C【解题分析】根据余弦二倍角公式即可计算求值.【题目详解】∵=,∴,∴.故选:C.10、C【解题分析】分析每个选项中两个函数的定义域,并化简函数解析式,利用函数相等的概念可得出合适的选项.【题目详解】对于A选项,函数的定义域为,函数的定义域为,A选项中的两个函数不相等;对于B选项,函数的定义域为,函数的定义域为,B选项中的两个函数不相等;对于C选项,函数、的定义域均为,且,C选项中的两个函数相等;对于D选项,对于函数,有,解得,所以,函数的定义域为,函数的定义域为,D选项中的两个函数不相等.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据开偶次方被开方数非负数,结合对数函数的定义域得到不等式组,解出即可.【题目详解】函数定义域满足:解得所以函数的定义域为故答案为:【题目点拨】本题考查了求函数的定义域问题,考查对数函数的性质,属于基础题.12、【解题分析】由根式内部的代数式大于等于0,求得原函数的定义域,再求出内层函数的减区间,即可得到原函数的减区间【题目详解】由,得或,令,该函数在上单调递减,而y=是定义域内的增函数,∴函数的单调递减区间为故答案为:13、##30°【解题分析】由直线方程得斜率,由斜率得倾斜角【题目详解】试题分析:直线化成,可知,而,故故答案为:14、2【解题分析】根据给定条件把正余弦的齐次式化成正切,再代入计算作答.【题目详解】因,则,所以的值为2.故答案为:215、2【解题分析】利用对数性质及运算法则直接求解【题目详解】∵函数f(x)=log2(x2-5),∴f(3)=log2(9-5)=log24=2故答案为2【题目点拨】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题16、(1)(2),【解题分析】(1)根据角的终边经过点求,再由题意得周期求即可;(2)根据正弦函数的单调性求单调区间即可.【小问1详解】因为角的终边经过点,所以,若时,的最小值为可知,∴【小问2详解】令,解得故单调递增区间为:,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解题分析】结合奇函数性质以及单调性,去掉外层函数,变成一元二次不等式进行求解.【题目详解】由题即根据奇函数定义可知原不等式为又因为单调递减函数,故,解得或又因为函数定义域为故,解得,所以综上得的范围为.18、(1)1(2)-1【解题分析】(1)利用对数的运算性质直接计算可得;(2)先进行切化弦,再通分后利用和差角公式和诱导公式即可求得.【小问1详解】原式=lg2(lg2+lg5)+lg5=lg2+lg5=1【小问2详解】原式=sin40°(sin10°cos=sin40°(sin10=2=-2=-=-=-119、(1)(2)【解题分析】(1)根据题意可得,从而可求得,再根据正弦函数的性质结合整体思想即可得出答案;(2)求出平移后的函数的解析式,再根据正余弦函数的奇偶性即可得出答案.【小问1详解】解:因为函数的图象相邻两条对称轴之间的距离为,所以,所以,所以,所以,当时,,所以当时,函数取得最小值,当时,函数取得最大值,所以;【小问2详解】解:函数的图象向左平移个单位后,得到函数,因为为偶函数,所以,所以,又因为,所以.20、(Ⅰ);(Ⅱ)答案见详解.【解题分析】(Ⅰ)对分段函数求值域,分别求出每一段函数的值域,再求其并集即可;(Ⅱ)函数有零点,即表示方程有根,与函数图像有交点,因而将换元,利用二次函数性质求出其值域,再数形结合讨论零点个数即可.【题目详解】(Ⅰ)如下图所示:当时,;当时,,所以函数的值域为;(Ⅱ)若函数有零点,即方程有根,即与函数图像有交点,令,,当时,,此时,即函数值域为,故而:当时,函数有零点,且当或时,函数有一个零点;当时,函数有两个零点.【题目点拨】(1)对分段函数求值域,先求出每一段函数的值域,再求其并集即可,也可利用函数图像去求;(2)函数零点问题一般可以转换为方程的根,或者两函数图像交点的问题,在答题时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论