2024届贵州省黔东南市高一上数学期末学业质量监测试题含解析_第1页
2024届贵州省黔东南市高一上数学期末学业质量监测试题含解析_第2页
2024届贵州省黔东南市高一上数学期末学业质量监测试题含解析_第3页
2024届贵州省黔东南市高一上数学期末学业质量监测试题含解析_第4页
2024届贵州省黔东南市高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届贵州省黔东南市高一上数学期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,是不共线的向量,,,,若,,三点共线,则实数的值为()A. B.10C. D.52.17世纪,在研究天文学的过程中,为了简化大数运算,苏格兰数学家纳皮尔发明了对数,对数的思想方法即把乘方和乘法运算分别转化为乘法和加法,数学家拉普拉斯称赞为“对数的发明在实效上等于把天文学家的寿命延长了许多倍”.已知,,设,则所在的区间为()A. B.C. D.3.已知函数在上是增函数,则实数的取值范围是A. B.C. D.4.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数概率是A. B.C. D.5.下列函数中,最小正周期为π2A.y=cosxC.y=cos2x6.已知是方程的两根,且,则的值为A. B.C.或 D.7.若函数y=|x|(x-1)的图象与直线y=2(x-t)有且只有2个公共点,则实数t的所有取值之和为()A.2 B.C.1 D.8.已知函数的部分图象如图所示,下列结论正确的个数是()①②将的图象向右平移1个单位,得到函数的图象③的图象关于直线对称④若,则A.0个 B.1个C.2个 D.3个9.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,,,三角形的面积可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦秦九韶公式,现有一个三角形的边长满足,,则此三角形面积的最大值为()A.6 B.C.12 D.10.已知函数满足对任意实数,都有成立,则的取值范围是()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知f(x)是定义在R上的偶函数,且在区间(−∞,0)上单调递增.若实数a满足f(2|a-1|)>f(-2),则a的取值范围是12.函数的单调减区间是__________13.已知集合,则集合的子集个数为___________.14.在三棱锥中,,,,则三棱锥的外接球的表面积为________.15.函数的反函数是___________.16.有下列四个说法:①已知向量,,若与的夹角为钝角,则;②若函数的图象关于直线对称,则;③函数在上单调递减,在上单调递增;④当时,函数有四个零点其中正确的是___________(填上所有正确说法的序号)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)若在区间上的最大值为,求的取值范围;(2)若在区间上有零点,求的最小值.18.已知函数的定义域为,且对一切,,都有,当时,总有.(1)求的值;(2)证明:是定义域上的减函数;(3)若,解不等式.19.设函数,将该函数的图象向左平移个单位长度后得到函数的图象,函数的图象关于y轴对称.(1)求的值,并在给定的坐标系内,用“五点法”列表并画出函数在一个周期内的图象;(2)求函数的单调递增区间;(3)设关于x的方程在区间上有两个不相等的实数根,求实数m的取值范围.20.已知非空集合,(1)当时,求;(2)若,求实数的取值范围21.已知函数,,且.(1)求实数m的值,并求函数有3个不同的零点时实数b的取值范围;(2)若函数在区间上为增函数,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】由向量的线性运算,求得,根据三点共线,得到,列出方程组,即可求解.【题目详解】由,,可得,因为,,三点共线,所以,所以存在唯一的实数,使得,即,所以,解得,.故选:A.2、C【解题分析】利用对数的运算性质求出,由此可得答案.【题目详解】,所以.故选:C3、A【解题分析】当时,在上是增函数,且恒大于零,即当时,在上是减函数,且恒大于零,即,因此选A点睛:1.复合函数单调性的规则若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减函数.即“同增异减”

函数单调性的性质(1)若f(x),g(x)均为区间A上的增(减)函数,则f(x)+g(x)也是区间A上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反4、A【解题分析】从1,2,3,4这4个数中,不放回地任意取两个数,共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种其中满足条件两个数都是奇数的有(1,3),(3,1)两种情况故从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率.故选A.5、D【解题分析】利用三角函数的周期性求解.【题目详解】A.y=cosx周期为T=2πB.y=tanx的周期为C.y=cos2x的周期为D.y=tan2x的周期为故选:D6、A【解题分析】∵是方程的两根,∴,∴又,∴,∵,∴又,∴,∴.选A点睛:解决三角恒等变换中给值求角问题的注意点解决“给值求角”问题时,解题的关键也是变角,即把所求角用含已知角的式子表示,然后求出适合的一个三角函数值.再根据所给的条件确定所求角的范围,最后结合该范围求得角,有时为了解题需要压缩角的取值范围7、C【解题分析】可直接根据题意转化为方程有两个根,然后利用分类讨论思想去掉绝对值再利用判别式即可求得各个t的值【题目详解】由题意得方程有两个不等实根,当方程有两个非负根时,令时,则方程为,整理得,解得;当时,,解得,故不满足满足题意;当方程有一个正跟一个负根时,当时,,,解得,当时,方程为,,解得;当方程有两个负根时,令,则方程为,解得,当,,解得,不满足题意综上,t的取值为和,因此t的所有取值之和为1,故选C【题目点拨】本题是在二次函数的基础上加了绝对值,所以首先需解决绝对值,关于去绝对值直接用分类讨论思想即可;关于二次函数根的分布需结合对称轴,判别式,进而判断,必要时可结合进行判断8、C【解题分析】由函数的图象的顶点坐标求出A,由周期求出,可判断①,由点的坐标代入求得,可得函数的解析式,再根据函数图象的变换规律可判断②,将代入解析式中验证,可判断③;根据三角函数的图象和性质可判断④,即可得到答案【题目详解】由函数图象可知:,函数的最小正周期为,故,将代入解析式中:,得:由于,故,故①错误;由以上分析可知,将的图象向右平移1个单位,得到函数的图象,故②正确;将代入得,故③错误;由于函数的最小正周期为8,而,故不会出现一个取到最大或最小值另一个取到最小或最大的情况,故,故④正确,故选:C9、B【解题分析】根据海伦秦九韶公式和基本不等式直接计算即可.【题目详解】由题意得:,,当且仅当,即时取等号,故选:B10、C【解题分析】易知函数在R上递增,由求解.【题目详解】因为函数满足对任意实数,都有成立,所以函数在R上递增,所以,解得,故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、(【解题分析】由题意f(x)在(0,+∞)上单调递减,又f(x)是偶函数,则不等式f(2a-1)>f(-2)可化为f(212、【解题分析】,在上递增,在上递增,在上递增,在上递减,复合函数的性质,可得单调减区间是,故答案为.13、2【解题分析】先求出然后直接写出子集即可.【题目详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.14、【解题分析】构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P-ABC外接球的直径,即可求出三棱锥P-ABC外接球的表面积【题目详解】∵三棱锥P−ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴构造长方体,使得面上的对角线长分别为4,5,,则长方体的对角线长等于三棱锥P−ABC外接球的直径.设长方体的棱长分别为x,y,z,则,∴三棱锥P−ABC外接球的直径为,∴三棱锥P−ABC外接球的表面积为.故答案为:26π.【题目点拨】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.15、;【解题分析】根据指数函数与对数函数互为反函数直接求解.【题目详解】因为,所以,即的反函数为,故答案为:16、②③【解题分析】①:根据平面向量夹角的性质进行求解判断;②:利用函数的对称性,结合两角和(差)的正余弦公式进行求解判断即可;③:利用导数的性质、函数的奇偶性进行求解判断即可.④:根据对数函数的性质,结合零点的定义进行求解判断即可【题目详解】①:因为与的夹角为钝角,所以有且与不能反向共线,因此有,当与反向共线时,,所以有且,因此本说法不正确;②:因为函数的图象关于直线对称,所以有,即,于是有:,化简,得,因为,所以,因此本说法正确;③:因为,所以函数偶函数,,当时,单调递增,即在上单调递增,又因为该函数是偶函数,所以该在上单调递减,因此本说法正确;④:,问题转化为函数与函数的交点个数问题,如图所示:当时,,此时有四个交点,当时,,所以交点的个数不是四个,因此本说法不正确,故答案为:②③三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】⑴根据函数图象可得在区间上的最大值必是和其中较大者,求解即可得到的取值范围;⑵设方程的两根是,,由根与系数之间的关系转化为,对其化简原式大于或者等于,构造新函数,利用函数的最值来求解解析:(1)因为图象是开口向上的抛物线,所以在区间上的最大值必是和中较大者,而,所以只要,即,得.(2)设方程的两根是,,且,则,所以,当且仅当时取等号.设,则,由,得,因此,所以,此时,由知.所以当且时,取得最小值.点睛:本题考查了函数零点的判定定理,二次函数的性质以及解不等式,在求参量的最值时,利用根与系数之间的关系,转化为根的方程,运用函数的思想当取得对称轴时有最值,本题需要进行化归转化,难度较大18、(1);(2)证明见解析;(3).【解题分析】(1)令即可求得结果;(2)设,由即可证得结论;(3)将所求不等式化为,结合单调性和定义域的要求即可构造不等式组求得结果.【小问1详解】令,则,解得:;【小问2详解】设,则,,,,是定义域上的减函数;【小问3详解】由得:,即,又,,是定义域上的减函数,,解得:;又,,的解集为.【题目点拨】思路点睛:本题考查抽象函数的函数值的求解、单调性证明以及利用单调性求解函数不等式的问题;求解函数不等式的基本思路是将所求不等式化为同一函数的两个函数值之间的比较问题,进而通过函数的单调性得到自变量的大小关系.19、(1),图象见解析;(2)(3)【解题分析】(1)化简解析式,通过三角函数图象变换求得,结合关于轴对称求得,利用五点法作图即可;(2)利用整体代入法求得的单调递增区间.(3)化简方程,利用换元法,结合一元二次方程根的分布求得的取值范围.【小问1详解】.所以,将该函数的图象向左平移个单位后得到函数,则,该函数的图象关于轴对称,可知该函数为偶函数,故,,解得,.因为,所以得到.所以函数,列表:000作图如下:【小问2详解】由函数,令,,解得,,所以函数的单调递增区间为【小问3详解】由(1)得到,化简得,令,,则.关于的方程,即,解得,.当时,由,可得;要使原方程在上有两个不相等的实数根,则,解得.故实数的取值范围为.20、(1);(2).【解题分析】(1)时,先解一元二次不等式,化简集合A和B,再进行交集运算即可;(2)根据子集关系列不等式,解不等式即得结果.【题目详解】解:(1)当时,,由,解得,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论