浙江省嘉兴市南湖区第一中学2024届高一上数学期末学业水平测试模拟试题含解析_第1页
浙江省嘉兴市南湖区第一中学2024届高一上数学期末学业水平测试模拟试题含解析_第2页
浙江省嘉兴市南湖区第一中学2024届高一上数学期末学业水平测试模拟试题含解析_第3页
浙江省嘉兴市南湖区第一中学2024届高一上数学期末学业水平测试模拟试题含解析_第4页
浙江省嘉兴市南湖区第一中学2024届高一上数学期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省嘉兴市南湖区第一中学2024届高一上数学期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.全称量词命题“,”的否定为()A., B.,C., D.,2.已知角的终边经过点,则的值为A. B.C. D.3.三棱柱中,侧棱垂直于底面,底面三角形是正三角形,是的中点,则下列叙述正确的是①与是异面直线;②与异面直线,且③面④A.② B.①③C.①④ D.②④4.命题:,,则该命题的否定为()A., B.,C., D.,5.设,是两条不同的直线,,,是三个不同的平面,给出下列命题:①若,,,则;②若,,则;③若,,,则;④若,,则其中正确命题的序号是A.①③ B.①④C.②③ D.②④6.已知集合,则()A. B.C. D.7.函数,则函数()A.在上是增函数 B.在上是减函数C.在是增函数 D.在是减函数8.已知是非零向量且满足,,则与的夹角是()A. B.C. D.9.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则10.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°二、填空题:本大题共6小题,每小题5分,共30分。11.已知是第四象限角且,则______________.12.化简的结果为______.13.在空间直角坐标系中,点在平面上的射影为点,在平面上的射影为点,则__________14.棱长为2个单位长度的正方体中,以为坐标原点,以,,分别为,,轴,则与的交点的坐标为__________15.已知函数(,,)的部分图象如图,则函数的单调递增区间为______.16.已知函数.则函数的最大值和最小值之积为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算:18.已知函数f(x)=(a,b为常数,且a≠0)满足f(2)=1,方程f(x)=x有唯一解,(1)求函数f(x)的解析式;(2)若,求函数的最大值.19.已知向量,,设函数Ⅰ求函数的最小正周期和单调递增区间;Ⅱ求函数在区间的最大值和最小值20.已知集合,.(1)求;(2)求.21.已知,函数.(1)当时,解不等式;(2)若关于的方程的解集中恰有一个元素,求的取值范围;(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由命题的否定的概念判断.否定结论,存在量词与全称量词互换.【题目详解】根据全称量词命题的否定是存在量词命题,可得命题“”的否定是“”故选:C.【题目点拨】本题考查命题的否定,属于基础题.2、C【解题分析】因为点在单位圆上,又在角的终边上,所以;则;故选C.3、A【解题分析】对于①,都在平面内,故错误;对于②,为在两个平行平面中且不平行的两条直线,底面三角形是正三角形,是中点,故与是异面直线,且,故正确;对于③,上底面是一个正三角形,不可能存在平面,故错误;对于④,所在的平面与平面相交,且与交线有公共点,故错误.故选A4、B【解题分析】根据特称命题的否定可得出结论.【题目详解】由特称命题的否定可知,原命题的否定为:,.故选:B.【题目点拨】本题考查特称命题否定的改写,解题的关键就是弄清特称命题的否定与全称命题之间的关系,属于基础题.5、C【解题分析】由空间中直线与平面的位置关系逐项分析即可【题目详解】当时,可能平行,也可能相交或异面,所以①不正确;当时,可以平行,也可以相交,所以④不正确;若,,则;若,则,故正确命题的序号是②③.【题目点拨】本题考查空间中平面与直线的位置关系,属于一般题6、D【解题分析】求出集合A,再求A与B的交集即可.【题目详解】∵,∴.故选:D.7、C【解题分析】根据基本函数单调性直接求解.【题目详解】因为,所以函数在是增函数,故选:C8、B【解题分析】利用向量垂直求得,代入夹角公式即可.【题目详解】设的夹角为;因为,,所以,则,则故选:B【题目点拨】向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.9、D【解题分析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当

时,存在,,故B项错误;C项,可能相交或垂直,当

时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.10、A【解题分析】由诱导公式计算出函数值后判断详解】,,,故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】直接由平方关系求解即可.【题目详解】由是第四象限角,可得.故答案为:.12、0【解题分析】由对数的运算求解即可.【题目详解】故答案为:13、【解题分析】因为点在平面上的射影为点,在平面上的射影为点,所以由两点间距离公式可得,故答案为.14、【解题分析】设即的坐标为15、【解题分析】由函数的图象得到函数的周期,同时根据图象的性质求得一个单调增区间,然后利用周期性即可写出所有的增区间.【题目详解】由图可知函数f(x)的最小正周期.如图所示,一个周期内的最低点和最高点分别记作,分别作在轴上的射影,记作,根据的对称性可得的横坐标分别为,∴是函数f(x)的一个单调增区间,∴函数的单调增区间是,故答案为:,【题目点拨】本题关键在于掌握函数图象的对称性和周期性.一般往往先从函数的图象确定函数中的各个参数的值,再利用函数的解析式和正弦函数的性质求得单调区间,但是直接由图象得到函数的周期,并根据函数的图象的性质求得一个单调增区间,进而写出所有的增区间,更为简洁.16、80【解题分析】根据二次函数的性质直接计算可得.【题目详解】因为,所以当时,,当时,,所以最大值和最小值之积为.故答案为:80三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、109【解题分析】化根式为分数指数幂,运用有理数指数幂的运算性质化简可求出值.【题目详解】原式=()6+1=22×33+2﹣1=108+2﹣1=109【题目点拨】本题考查根式的概念,将根式化为分数指数幂和其运算法则的应用,属于基础题.18、(1)f(x)=;(2).【解题分析】(1)由可得,由此方程的解唯一,可得,可求出,再由f(2)=1,可求出的值,进而可求出函数f(x)的解析式;(2)由题意可得,然后求出的最小值,可得的最大值【题目详解】解:(1)由,得,即.因为方程有唯一解,所以,即,因为f(2)=1,所以=1,所以,所以=;(2)因为,所以,而,当,即时,取得最小值,此时取得最大值.19、(Ⅰ)最小正周期是,增区间为,;(Ⅱ)最大值为5,最小值为4【解题分析】Ⅰ根据向量数量积,利用二倍角的正弦公式、二倍角的余弦公式以及两角和与差的正弦公式将函数化为,利用正弦函数的周期公式可得函数的周期,利用正弦函数的单调性解不等式,可得到函数的递增区间;Ⅱ根据的范围得的范围,结合正弦函数的单调性可得的最大最小值【题目详解】Ⅰ,,,,由,得,所以的增区间为,;Ⅱ,,可得,的最大值为5,最小值为4【题目点拨】以三角形和平面向量为载体,三角恒等变换为手段,三角函数的图象与性质为工具,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.20、(1)(2)【解题分析】(1)分别求两个集合,再求交集;(2)先求,再求.【小问1详解】,解得:,即,,解得:,即,;【小问2详解】,.21、(1).(2).(3)【解题分析】(1)当时,解对数不等式即可;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论的取值范围进行求解即可;(3)根据条件得到,恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.试题解析:(1)由,得,解得(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2(a)﹣log2[(a﹣4)x+2a﹣5]=0即log2(a)=log2[(a﹣4)x+2a﹣5],即a=(a﹣4)x+2a﹣5>0,①则(a﹣4)x2+(a﹣5)x﹣1=0,即(x+1)[(a﹣4)x﹣1]=0,②,当a=4时,方程②的解为x=﹣1,代入①,成立当a=3时,方程②的解为x=﹣1,代入①,成立当a≠4且a≠3时,方程②的解为x=﹣1或x,若x=﹣1是方程①的解,则a=a﹣1>0,即a>1,若x是方程①的解,则a=2a﹣4>0,即a>2,则要使方程①有且仅有一个解,则1<a≤2综上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一个元素,则a的取值范围是1<a≤2,或a=3或a=4(3)函数f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论