河南上蔡第一高级中学2024届数学高一上期末联考试题含解析_第1页
河南上蔡第一高级中学2024届数学高一上期末联考试题含解析_第2页
河南上蔡第一高级中学2024届数学高一上期末联考试题含解析_第3页
河南上蔡第一高级中学2024届数学高一上期末联考试题含解析_第4页
河南上蔡第一高级中学2024届数学高一上期末联考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南上蔡第一高级中学2024届数学高一上期末联考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则()A. B.C. D.2.函数的零点所在区间为:()A. B.C. D.3.已知矩形,,,沿矩形的对角线将平面折起,若四点都在同一球面上,则该球面的面积为()A. B.C. D.4.已知函数可表示为()xy2345则下列结论正确的是()A. B.的值域是C.的值域是 D.在区间上单调递增5.幂函数的图象关于轴对称,且在上是增函数,则的值为()A. B.C. D.和6.入冬以来,雾霾天气在部分地区频发,给人们的健康和出行造成严重的影响.经研究发现,工业废气等污染排放是雾霾形成和持续的重要因素,治理污染刻不容缓.为降低对空气的污染,某工厂采购一套废气处理装备,使工业生产产生的废气经过过滤后再排放.已知过滤过程中废气的污染物数量P(单位:mg/L)与过滤时间t(单位:h)间的关系为(,k均为非零常数,e为自然对数底数),其中为t=0时的污染物数量,若经过3h处理,20%的污染物被过滤掉,则常数k的值为()A. B.C. D.7.已知函数,若对一切,都成立,则实数a的取值范围为()A. B.C. D.8.若函数是函数(且)的反函数,且,则()A. B.C. D.9.若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定10.下列函数中既是奇函数,又是其定义域上的增函数的是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,正方形ABCD中,M,N分别是BC,CD中点,若,则______.12.函数y=的单调递增区间是____.13.若函数,则函数的值域为___________.14.已知函数(且)在上单调递减,且关于的方程恰有两个不相等的实数解,则的取值范围是_____15.若幂函数的图象经过点,则的值等于_________.16.设,,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为偶函数(1)求实数的值;(2)记集合,,判断与的关系;(3)当时,若函数值域为,求的值.18.已知函数(1)若不等式的解集为,求的值;(2)当时,求关于的不等式的解集19.已知函数.(1)求函数的单调递增区间;(2)将函数的图象向右平移个单位后得到的图象,求在区间上的最小值.20.如图,边长为的正方形所在平面与正三角形所在平面互相垂直,分别为的中点.(1)求四棱锥的体积;(2)求证:平面;(3)试问:在线段上是否存在一点,使得平面平面?若存在,试指出点的位置,并证明你的结论;若不存在,请说明理由.21.已知集合为非空数集,定义,.(1)若集合,直接写出集合及;(2)若集合,,且,求证;(3)若集,且,求集合中元素的个数的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据交集定义运算即可【题目详解】因为,所以,故选:B.【题目点拨】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.2、C【解题分析】利用函数的单调性及零点存在定理即得.【题目详解】因为,所以函数单调递减,,∴函数的零点所在区间为.故选:C.3、C【解题分析】矩形ABCD,AB=6,BC=8,矩形的对角线AC=10为该球的直径,所以该球面的面积为.故选C.4、B【解题分析】根据给定的对应值表,逐一分析各选项即可判断作答.【题目详解】由给定的对应值表知:,则,A不正确;函数的值域是,B正确,C不正确;当时,,即在区间上不单调,D不正确.故选:B5、D【解题分析】分别代入的值,由幂函数性质判断函数增减性即可.【题目详解】因为,,所以当时,,由幂函数性质得,在上是减函数;所以当时,,由幂函数性质得,在上是常函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;所以当时,,由幂函数性质得,图象关于y轴对称,在上是增函数;故选:D6、A【解题分析】由题意可得,从而得到常数k的值.【题目详解】由题意可得,∴,即∴故选:A7、C【解题分析】将,成立,转化为,对一切成立,由求解即可.【题目详解】解:因为函数,若对一切,都成立,所以,对一切成立,令,所以,故选:C【题目点拨】方法点睛:恒(能)成立问题的解法:若在区间D上有最值,则(1)恒成立:;;(2)能成立:;.若能分离常数,即将问题转化为:(或),则(1)恒成立:;;(2)能成立:;.8、B【解题分析】由题意可得出,结合可得出的值,进而可求得函数的解析式.【题目详解】由于函数是函数(且)的反函数,则,则,解得,因此,.故选:B.9、A【解题分析】已知式平方后可判断为正判断的正负,从而判断三角形形状【题目详解】解:∵,∴,∵是三角形的一个内角,则,∴,∴为钝角,∴这个三角形为钝角三角形.故选:A10、C【解题分析】对于A,函数的偶函数,不符合,故错;对于B,定义域为,是非奇非偶函数,故错;对于C,定义域R,是奇函数,且是增函数,正确;对于D,是奇函数,但是是减函数,故错考点:本题考查函数的奇偶性和单调性点评:解决本题的关键是掌握初等函数的奇偶性和单调性二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】以,为基底,由平面向量基本定理,列方程求解,即可得出结果.【题目详解】设,则,由于可得,解得,所以故答案为:【题目点拨】本题考查平面向量基本定理的运用,考查向量的加法运算,考查运算求解能力,属于中档题.12、【解题分析】设函数,再利用复合函数的单调性原理求解.【题目详解】解:由题得函数的定义域为.设函数,因为函数的单调递减区间为,单调递增区间为,函数是单调递减函数,由复合函数的单调性得函数y=的单调递增区间为.故答案为:13、【解题分析】求出函数的定义域,进而求出的范围,利用换元法即可求出函数的值域.【题目详解】由已知函数的定义域为又,定义域需满足,令,因为,所以,利用二次函数的性质知,函数的值域为故答案为:.14、【解题分析】利用函数是减函数,根据对数的图象和性质判断出的大致范围,再根据为减函数,得到不等式组,利用函数的图象,方程的解的个数,推出的范围【题目详解】函数(且),在上单调递减,则:;解得,由图象可知,在上,有且仅有一个解,故在上,同样有且仅有一个解,当即时,联立,则,解得或1(舍去),当时由图象可知,符合条件,综上:的取值范围为.故答案为【题目点拨】本题考查函数的单调性和方程的零点,对于分段函数在定义域内是减函数,除了每一段都是减函数以外,还要注意右段在左段的下方,经常会被忽略,是一个易错点;复杂方程的解通常转化为函数的零点,或两函数的交点,体现了数学结合思想,属于难题.15、【解题分析】设出幂函数,将点代入解析式,求出解析式即可求解.【题目详解】设,函数图像经过,可得,解得,所以,所以.故答案为:【题目点拨】本题考查了幂函数的定义,考查了基本运算求解能力,属于基础题.16、【解题分析】利用向量的坐标运算先求出的坐标,再利用向量的数量积公式求出的值【题目详解】因为,,,所以,所以,故答案为【题目点拨】本题考查向量的坐标运算,考查向量的数量积公式,熟记坐标运算法则,准确计算是关键,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解题分析】(1)由恒成立,可得恒成立,进而得实数的值;(2)化简集合,得;(3)先判定的单调性,再求出时的范围,与等价即可求出实数的值.试题解析:(1)为偶函数,.(2)由(1)可知:,当时,;当时,.,.(3).上单调递增,,为的两个根,又由题意可知:,且.考点:1、函数的奇偶性及值域;2、对数的运算.18、(1);(2)见解析.【解题分析】(1)根据二次不等式解集与二次函数图像的关系即可求出a的取值;(2)根据二次函数图像的性质即可分类讨论解不等式.【小问1详解】不等式即,可化为因为的解集是,所以且解得;【小问2详解】不等式即,因为,所以不等式可化为当时,即,原不等式的解集当时,即,原不等式的解集为当时即原不等式的解集.综上所述,当时,原不等式的解;当时,原不等式的解集为;当时,原不等式的解集.19、(1);(2)-2.【解题分析】(1)化简f(x)解析式,根据正弦函数复合函数单调性即可求解;(2)根据求出的范围,再根据正弦函数最值即可求解.【小问1详解】.由得f(x)的单调递增区间为:;【小问2详解】将函数的图象向右平移个单位后得到的图象,则.,∴.20、(1);(2)证明见解析;(3)存在,为中点,证明见解析.【解题分析】(1)由等腰三角形三线合一性质和面面垂直性质定理可证得平面,由棱锥体积公式可求得结果;(2)连结交于点,由三角形中位线性质可证得,由线面平行判定定理可得到结论;(3)当为中点时,由正方形的性质、线面垂直的性质,结合线面垂直的判定可证得平面,由面面垂直的判定定理可证得结论.【题目详解】(1)为中点,为正三角形,.平面平面,平面平面,平面,平面.,,.(2)证明:连结交于点,连结.由四边形为正方形知点为的中点,又为的中点,,平面,平面,平面.(3)存在点,当为中点时,平面平面.证明如下:因为四边形是正方形,为的中点,,由(1)知:平面,平面,,又,平面.平面,平面平面.【题目点拨】关键点点睛:本题第三问考查了与面面垂直有关的存在性问题的处理,解题关键是能够根据平面确定只要在上,必有,由此只需找到与面中的另一条与相交的直线垂直即可,进而锁定的位置.21、(1),;(2)证明见解析;(3)1347.【解题分析】(1)根据题目定义,直接得到集合A+及A﹣;(2)根据两集合相等即可找到x1,x2,x3,x4的关系;(3)通过假设A集合{m,m+1,m+2,…,4040},m≤2020,m∈N,求出相应的A+及A﹣,通过A+∩A﹣=∅建立不等关系求出相应的值【题目详解】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论