版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省汪清县汪清四中2024届高一上数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,且,则()A. B.C. D.2.函数的单调递增区间是()A. B.C. D.3.甲、乙两位同学解答一道题:“已知,,求的值.”甲同学解答过程如下:解:由,得.因为,所以.所以.乙同学解答过程如下:解:因为,所以.则在上述两种解答过程中()A.甲同学解答正确,乙同学解答不正确 B.乙同学解答正确,甲同学解答不正确C.甲、乙两同学解答都正确 D.甲、乙两同学解答都不正确4.函数f(x)图象大致为()A. B.C. D.5.已知函数在上是增函数,则实数的取值范围是()A. B.C. D.6.若集合中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形7.已知,,则A. B.C. D.,8.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A. B.C. D.9.基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天10.已知集合A={x∈N|1<x<log2k},集合A中至少有2个元素,则()A.k≥4 B.k>4C.k≥8 D.k>8二、填空题:本大题共6小题,每小题5分,共30分。11.函数(且)的图像恒过定点______.12.方程的解在内,则的取值范围是___________.13.已知函数的零点为,则,则______14.已知tanα=3,则sinα(cosα-sinα)=______15.下列函数图象与x轴都有交点,其中不能用二分法求其零点的是___________.(写出所有符合条件的序号)16.若函数在区间上单调递减,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,,.(1)求,;(2)若,求实数a的取值范围.18.记函数的定义域为集合,函数的定义域为集合(Ⅰ)求集合;(Ⅱ)若,求实数的取值范围19.设函数.(1)求的单调增区间;(2)求在上的最大值与最小值.20.已知集合,(1),求实数的取值范围;(2)设,,若是的必要不充分条件,求实数的取值范围21.(1)计算:;(2)化简:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】构造函数,判断的单调性和奇偶性,由此化简不等式,即得.【题目详解】∵函数,令,则,∴的定义域为,,所以函数为奇函数,又,当增大时,增大,即在上递增,由,可得,即,∴,∴,即.故选:B.2、B【解题分析】先求出函数的定义域,然后将复合函数分解为内、外函数,分别讨论内外函数的单调性,进而根据复合函数单调性“同增异减”的原则,得到函数y=log3(x2-2x)的单调递增区间【题目详解】函数y=log5(x2-2x)的定义域为(-∞,0)∪(2,+∞),令t=x2-2x,则y=log5t,∵y=log5t为增函数,t=x2-2x在(-∞,0)上为减函数,在(2,+∞)为增函数,∴函数y=log5(x2-2x)的单调递增区间为(2,+∞),故选B【题目点拨】本题考查的知识点是复合函数的单调性,二次函数的性质,对数函数的单调性,其中复合函数单调性“同增异减”是解答本题的关键3、D【解题分析】分别利用甲乙两位同学的解题方法解题,从而可得出答案.【题目详解】解:对于甲同学,由,得,因为因为,所以,所以,故甲同学解答过程错误;对于乙同学,因为,所以,故乙同学解答过程错误.故选:D.4、A【解题分析】根据函数图象的特征,利用奇偶性判断,再利用特殊值取舍.【题目详解】因为f(x)=f(x),所以f(x)是奇函数,排除B,C又因为,排除D故选:A【题目点拨】本题主要考查了函数的图象,还考查了理解辨析的能力,属于基础题.5、A【解题分析】先考虑函数在上是增函数,再利用复合函数的单调性得出求解即可.【题目详解】设函数在上是增函数,解得故选:A【题目点拨】本题主要考查了由复合函数的单调性求参数范围,属于中档题.6、D【解题分析】根据集合元素的互异性即可判断.【题目详解】由题可知,集合中的元素是的三边长,则,所以一定不是等腰三角形故选:D7、D【解题分析】∵,,∴,,∴.故选8、C【解题分析】如图所示,补成直四棱柱,则所求角为,易得,因此,故选C平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围9、B【解题分析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【题目详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【题目点拨】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.10、D【解题分析】首先确定集合A,由此得到log2k>3,即可求k的取值范围.【题目详解】∵集合A={x∈N|1<x<log2k},集合A中至少有2个元素,∴A={2,3},则log2k>3,可得k>8.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据指数函数恒过定点的性质,令指数幂等于零即可.【题目详解】由,.此时.故图像恒过定点.故答案为:【题目点拨】本题主要考查指数函数恒过定点的性质,属于简单题.12、【解题分析】先令,按照单调性求出函数的值域,写出的取值范围即可.【题目详解】令,显然该函数增函数,,值域为,故.故答案为:.13、2【解题分析】根据函数的单调性及零点存在定理即得.【题目详解】∵函数,函数在上单调递增,又,∴,即.故答案为:2.14、【解题分析】利用同角三角函数基本关系式化简所求,得到正切函数的表达式,根据已知即可计算得解【题目详解】解:∵tanα=3,∴sinα(cosα﹣sinα)故答案为【题目点拨】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基本知识的考查15、(1)(3)【解题分析】根据二分法所求零点的特点,结合图象可确定结果.【题目详解】用二分法只能求“变号零点”,(1),(3)中的函数零点不是“变号零点”,故不能用二分法求故答案为:(1)(3)16、【解题分析】本题等价于在上单调递增,对称轴,所以,得.即实数的取值范围是点睛:本题考查复合函数的单调性问题.复合函数的单调性遵循“同增异减”的性质.所以本题的单调性问题就等价于在上单调递增,为开口向上的抛物线单调性判断,结合图象即可得到答案三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】(1)由交集和并集运算直接求解即可.(2)由,则【题目详解】(1)由集合,则,(2)若,则,所以18、(Ⅰ);(Ⅱ)【解题分析】(1)根据根式有意义的条件,并结合指数函数的性质解不等式得到集合A;(2)先求解集合,由得到A是B的子集,根据集合包含关系列出关于a的不等式,求得a的取值范围【题目详解】(Ⅰ)由已知得:(Ⅱ)由∵,∴或∵,∴,∴19、(1)(2)最大值为2,最小值为【解题分析】(1)利用三角恒等变换化简可得,根据正弦型函数的单调性计算即可得出结果.(2)由得,利用正弦函数的图像和性质计算即可得出结果.【小问1详解】令,得,所以的单调增区间为【小问2详解】由得,所以当,即时,取最大值2;当,即时,取最小值.20、(1)(2)【解题分析】(1)化简集合,,由,利用两个集
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳师范大学《建筑电气工程》2023-2024学年第一学期期末试卷
- 2024年旅游服务业员工服务质量与客户满意度合同3篇
- 2024云直播平台广告投放与效果评估合同3篇
- 采石矿开采合同范本3篇
- 消防承包合同范本速递3篇
- 转包合同的工程设计3篇
- 绿植租赁购买合同3篇
- 设计合作终止协议解除合同法律程序3篇
- 软件运维服务合同定制3篇
- 2024年度大理石石材进口及国内运输合同3篇
- 《结构化学》课件
- 企业食堂投标技术方案
- 采购与供应管理流程培训课程
- 【小学心理健康教育分析国内外文献综述4100字】
- 职业暴露习题及答案
- 燃气蒸汽联合循环电厂汽轮机的运行特点
- 小学数学-数字编码教学设计学情分析教材分析课后反思
- 《电力工程电缆设计规范》
- 石化企业污水处理设施典型事故案例分析课件
- 2023-2024学年四川省乐山市峨眉山市三年级数学第一学期期末统考模拟试题含答案
- 2023年6月福建省普通高中学生学业基础会考物理试卷篇
评论
0/150
提交评论