版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新疆昌吉市玛纳斯县第一中学2024届数学高一上期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.基本再生数R0与世代间隔T是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0=1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天 B.1.8天C.2.5天 D.3.5天2.下列关系中,正确的是()A. B.C D.3.土地沙漠化的治理,对中国乃至世界来说都是一个难题,我国创造了治沙成功案例——毛乌素沙漠.某沙漠经过一段时间的治理,已有1000公顷植被,假设每年植被面积以20%的增长率呈指数增长,按这种规律发展下去,则植被面积达到4000公顷至少需要经过的年数为()(参考数据:取)A.6 B.7C.8 D.94.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B.C. D.5.已知,,,则a、b、c的大小关系为()A. B.C. D.6.已知直线:与:平行,则的值是().A.或 B.或C.或 D.或7.下列说法正确的是A.棱柱被平面分成的两部分可以都是棱柱 B.底面是矩形的平行六面体是长方体C.棱柱的底面一定是平行四边形 D.棱锥的底面一定是三角形8.已知函数的图象是一条连续不断的曲线,且有如下对应函数值表:12456123.13615.55210.88-52.488-232.064在以下区间中,一定有零点的是()A.(1,2) B.(2,4)C.(4,5) D.(5,6)9.根据表格中的数据可以判定方程的一个根所在的区间为()1234500.6931.0991.3861.60910123A. B.C. D.10.用反证法证明命题:“已知.,若不能被7整除,则与都不能被7整除”时,假设的内容应为A.,都能被7整除 B.,不能被7整除C.,至少有一个能被7整除 D.,至多有一个能被7整除二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在区间上是增函数,则下列结论正确是__________(将所有符合题意的序号填在横线上)①函数在区间上是增函数;②满足条件的正整数的最大值为3;③.12.已知函数,若,则________.13.已知,,且,则的最小值为________.14.写出一个同时具有下列性质的函数___________.①是奇函数;②在上为单调递减函数;③.15.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.16.函数在上单调递增,且为奇函数,若,则满足的的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(,且)是指数函数.(1)求k,b的值;(2)求解不等式.18.(1)用篱笆围一个面积为的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?19.已知,命题:,;命题:,.(1)若是真命题,求的最大值;(2)若是真命题,是假命题,求的取值范围.20.(附加题,本小题满分10分,该题计入总分)已知函数,若在区间内有且仅有一个,使得成立,则称函数具有性质(1)若,判断是否具有性质,说明理由;(2)若函数具有性质,试求实数的取值范围21.果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.149161(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,根据,解得即可得结果.【题目详解】因为,,,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.【题目点拨】本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.2、B【解题分析】根据对数函数的性质判断A,根据指数函数的性质判断B,根据正弦函数的性质及诱导公式判断C,根据余弦函数的性质及诱导公式判断D;【题目详解】解:对于A:因为,,,故A错误;对于B:因为在定义域上单调递减,因为,所以,又,,因为在上单调递增,所以,所以,所以,故B正确;对于C:因为在上单调递减,因为,所以,又,所以,故C错误;对于D:因为在上单调递减,又,所以,又,所以,故D错误;故选:B3、C【解题分析】根据题意列出不等式,利用对数换底公式,计算出结果.【题目详解】经过年后,植被面积为公顷,由,得.因为,所以,又因为,故植被面积达到4000公顷至少需要经过的年数为8.故选:C4、C【解题分析】如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选:C.5、A【解题分析】利用指数函数、对数函数、三角函数的知识判断出a、b、c的范围即可.【题目详解】因为,,所以故选:A6、C【解题分析】当k-3=0时,求出两直线的方程,检验是否平行;当k-3≠0时,由一次项系数之比相等且不等于常数项之比,求出k的值解:由两直线平行得,当k-3=0时,两直线方程分别为y=-1和y=3/2,显然两直线平行.当k-3≠0时,由,可得k=5.综上,k的值是3或5,故选C7、A【解题分析】对于B.底面是矩形的平行六面体,它的侧面不一定是矩形,故它也不一定是长方体,故B错;对于C.棱柱的底面是平面多边形,不一定是平行四边形,故C错;对于D.棱锥的底面是平面多边形,不一定是三角形,故D错;故选A考点:1.命题的真假;2.空间几何体的特征8、C【解题分析】由表格数据,结合零点存在定理判断零点所在区间.【题目详解】∵∴,,,,又函数的图象是一条连续不断的曲线,由函数零点存在定理可得在区间上一定有零点故选:C.9、C【解题分析】令,由表中数据结合零点存在性定理即可得解.【题目详解】令,由表格数据可得.由零点存在性定理可知,在区间内必有零点.故选C.【题目点拨】本题主要考查了零点存在性定理,属于基础题.10、C【解题分析】根据用反证法证明数学命题的步骤和方法,应先假设命题的否定成立而命题“与都不能被7整除”的否定为“至少有一个能被7整除”,故选C【题目点拨】本题主要考查用反证法证明数学命题,把要证结论进行否定,得到要证的结论的反面,是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、①②③【解题分析】!由题函数在区间上是增函数,则由可得为奇函数,则①函数在区间(,0)上是增函数,正确;由可得,即有满足条件的正整数的最大值为3,故②正确;由于由题意可得对称轴,即有.,故③正确故答案为①②③【题目点拨】本题考查正弦函数的图象和性质,重点是对称性和单调性的运用,考查运算能力,属于中档题12、【解题分析】根据题意,将分段函数分类讨论计算可得答案【题目详解】解:当时,,即,解得,满足题意;当时,,即,解得,不满足题意故.故答案为.【题目点拨】本题考查分段函数的计算,属于基础题13、12【解题分析】,展开后利用基本不等式可求【题目详解】∵,,且,∴,当且仅当,即,时取等号,故的最小值为12故答案为:1214、(答案不唯一,符合条件即可)【解题分析】根据三个性质结合图象可写出一个符合条件的函数解析式【题目详解】是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又在上为单调递减函数,同时,故可选,且为奇数,故答案为:15、(答案不止一个)【解题分析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:16、【解题分析】根据题意,f(x)为奇函数,若f(2)=1,则f(−2)=-1,f(x)在(−∞,+∞)单调递增,且−1⩽f(x−2)⩽1,即f(-2)⩽f(x−2)⩽f(2),则有−2⩽x−2⩽2,解可得0⩽x⩽4,即x的取值范围是;故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)答案见解析【解题分析】(1)根据指数函数的定义列出方程,即可得解;(2)分和两种情况讨论,结合指数函数的单调性即可得解.【小问1详解】解:因为(,且)是指数函数,所以,,所以,;【小问2详解】解:由(1)得(,且),①当时,在R上单调递增,则由,可得,解得;②当时,在R上单调递减,则由,可得,解得,综上可知,当时,原不等式的解集为;当时,原不等式的解集为.18、(1)当这个矩形菜园是边长为的正方形时,最短篱笆的长度为;(2)当这个矩形菜园是边长为的正方形时,最大面积是.【解题分析】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由题意得出,利用基本不等式可求出矩形周长的最小值,由等号成立的条件可得出矩形的边长,从而可得出结论;(2)由题意得出,利用基本不等式可求出矩形面积的最大值,由等号成立的条件可得出矩形的边长,从而可得出结论.【题目详解】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由已知得,由,可得,所以,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,所用篱笆最短,最短篱笆的长度为;(2)由已知得,则,矩形菜园的面积为.由,可得,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,菜园的面积最大,最大面积是.【题目点拨】本题考查基本不等式的应用,在运用基本不等式求最值时,充分利用“积定和最小,和定积最大”的思想求解,同时也要注意等号成立的条件,考查计算能力,属于基础题.19、(1)1;(2).【解题分析】(1)根据题意可得,为真,令,只需即可求解.(2)根据题意可得与一真一假,当是真命题时,可得或,分别求出当真假或假真时的取值范围,最后取并集即可求解.【题目详解】解:(1)若命题:,为真,∴则令,,又∵,∴,∴的最大值为1.(2)因为是真命题,是假命题,所以与一真一假,当是真命题时,,解得或,当是真命题,是假命题时,有,解得;当是假命题,是真命题时,有,解得;综上,的取值范围为.20、(Ⅰ)具有性质;(Ⅱ)或或【解题分析】(Ⅰ)具有性质.若存在,使得,解方程求出方程的根,即可证得;(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根.设,即在上有且只有一个零点.讨论的取值范围,结合零点存在定理,即可得到的范围试题解析:(Ⅰ)具有性质依题意,若存在,使,则时有,即,,.由于,所以.又因为区间内有且仅有一个,使成立,所以具有性质5分(Ⅱ)依题意,若函数具有性质,即方程在上有且只有一个实根设,即在上有且只有一个零点解法一:(1)当时,即时,可得在上为增函数,只需解得交集得(2)当时,即时,若使函数在上有且只有一个零点,需考虑以下3种情况:(ⅰ)时,在上有且只有一个零点,符合题意(ⅱ)当即时,需解得交集得(ⅲ)当时,即时,需解得交集得(3)当时,即时,可得在上为减函数只需解得交集得综上所述,若函数具有性质,实数的取值范围是或或14分解法二:依题意,(1)由得,,解得或同时需要考虑以下三种情况:(2)由解得(3)由解得不等式组无解(4)由解得解得综上所述,若函数具有性质,实数的取值范围是或或14分考点:1.零点存在定理;2.分类讨论的思想21、(1)更适合作为与的函数模型(2)果树数量为时年利润最大【解题分析】(1)将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年装修工程合同协议书模板
- 2025年度物流包装材料供应合同范本3篇
- 2024年股东股权协议书:携手共进共铸辉煌
- 2024年餐饮业务合作伙伴加盟合同样本版B版
- 2024年版融资租赁合同详案解析版
- 2024虾池承包养殖与水产养殖废弃物资源化利用合同3篇
- 2024年车展志愿者服务协议
- 2024年货物存储点保管合同
- 2024年顶级高额担保协议模板版B版
- 2024年高速公路停车场安全管理服务协议3篇
- (全)2023电气工程师内部考试习题含答案(继保)
- 辣椒栽培技术
- 纪检监察知识题库-案例分析(20题)
- 2023年中考语文备考之名著阅读《经典常谈》思维导图合集
- 《笨狼的故事》读书会读书分享PPT课件(带内容)
- 就这样当班主任读书分享
- 某kv送电线路铁塔组立监理细则
- 武艳艳数学思政课教学设计《式与方程的整理复习》
- 气柜安装工程施工方案
- GB/T 31989-2015高压电力用户用电安全
- GB/T 28750-2012节能量测量和验证技术通则
评论
0/150
提交评论