2024届江苏省苏州市苏苑高级中学高一数学第一学期期末统考试题含解析_第1页
2024届江苏省苏州市苏苑高级中学高一数学第一学期期末统考试题含解析_第2页
2024届江苏省苏州市苏苑高级中学高一数学第一学期期末统考试题含解析_第3页
2024届江苏省苏州市苏苑高级中学高一数学第一学期期末统考试题含解析_第4页
2024届江苏省苏州市苏苑高级中学高一数学第一学期期末统考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省苏州市苏苑高级中学高一数学第一学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,在棱长为1的正方体中,三棱锥的体积为()A. B.C. D.2.已知向量且,则x值为().A.6 B.-6C.7 D.-73.若函数的三个零点分别是,且,则()A. B.C. D.4.对于空间两不同的直线,两不同的平面,有下列推理:(1),(2),(3)(4),(5)其中推理正确的序号为A.(1)(3)(4) B.(2)(3)(5)C.(4)(5) D.(2)(3)(4)(5)5.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是A. B.C. D.6.已知函数是奇函数,则A. B.C. D.7.为了得到函数的图象,可以将函数的图象A.向右平移个单位 B.向左平移个单位C.向右平移个单位 D.向左平移个单位8.已知函数,下列关于该函数结论错误的是()A.的图象关于直线对称 B.的一个周期是C.的最大值为 D.是区间上的增函数9.如图,AB是⊙O直径,C是圆周上不同于A、B的任意一点,PA与平面ABC垂直,则四面体P_ABC的四个面中,直角三角形的个数有()A.4个 B.3个C.1个 D.2个10.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义在R上的奇函数f(x)周期为2,则__________.12.已知非零向量、满足,若,则、夹角的余弦值为_________.13.如图,点为锐角的终边与单位圆的交点,逆时针旋转得,逆时针旋转得逆时针旋转得,则__________,点的横坐标为_________14.已知,则___________15.如图,二面角的大小是30°,线段,与所成的角为45°,则与平面所成角的正弦值是__________16.如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数且图象经过点(1)求实数的值;(2)若,求实数的取值范围.18.已知,(1)当且x是第四象限角时,求的值;(2)若关于x的方程有实数根,求a的最小值19.已知函数过点(1)求的解析式;(2)求的值;(3)判断在区间上的单调性,并用定义证明20.已知函数的周期是.(1)求的单调递增区间;(2)求在上的最值及其对应的的值.21.已知集合,关于的不等式的解集为(1)求;(2)设,若集合中只有两个元素属于集合,求的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】用正方体的体积减去四个三棱锥的体积【题目详解】由,故选:A2、B【解题分析】利用向量垂直的坐标表示可以求解.【题目详解】因为,,所以,即;故选:B.【题目点拨】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养.3、D【解题分析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【题目详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【题目点拨】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理4、C【解题分析】因为时,可以在平面内,所以(1)不正确;因为时,可以在平面内,所以(2)不正确;因为时可以在平面内,所以(3)不正确;根据线面垂直的性质定理可得,(4)正确;根据线面平行的性质及线面垂直的性质可得(5)正确,推理正确的序号为(4)(5),故选C.【方法点晴】本题主要考查线面平行的判定与性质、面面垂直的性质及线面垂直的判定与性质,属于难题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.5、C【解题分析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【题目详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【题目点拨】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.6、A【解题分析】由函数的奇偶性求出,进而求得答案【题目详解】因为是奇函数,所以,即,则,故.【题目点拨】本题考查函数的奇偶性,属于基础题7、D【解题分析】因为,所以将函数的图象向左平移个单位,选D.考点:三角函数图像变换【易错点睛】对y=Asin(ωx+φ)进行图象变换时应注意以下两点:(1)平移变换时,x变为x±a(a>0),变换后的函数解析式为y=Asin[ω(x±a)+φ];(2)伸缩变换时,x变为(横坐标变为原来的k倍),变换后的函数解析式为y=Asin(x+φ)8、C【解题分析】利用诱导公式证明可判断A;利用可判断B;利用三角函数的性质可判断C;利用复合函数的单调性可判断D.【题目详解】对于A,,所以的图象关于直线对称,故A正确;对于B,,所以的一个周期是,故B正确;对于C,,所以的最大值为,当时,,取得最大值,所以的最大值为,故C不正确;对于D,在上单调递增,,在上单调递增,在上单调递减,,根据复合函数的单调性易知,在上单调递增,所以是区间上的增函数,故D正确.故选:C.【题目点拨】关键点点睛:解决本题的关键是熟练掌握函数对称性及周期性的判定及三角函数的图象与性质.9、A【解题分析】AB是圆O的直径,可得出三角形是直角三角形,由圆O所在的平面,根据线垂直于面性质得出三角形和三角形是直角三角形,同理可得三角形是直角三角形.【题目详解】∵AB是圆O的直径,∴∠ACB=,即,三角形是直角三角形.又∵圆O所在的平面,∴三角形和三角形是直角三角形,且BC在此平面中,∴平面,∴三角形是直角三角形.综上,三角形,三角形,三角形,三角形.直角三角形数量为4.故选:A.【题目点拨】考查线面垂直的判定定理和应用,知识点较为基础.需多理解.难度一般.10、C【解题分析】如图,取中点,则平面,故,因此与平面所成角即为,设,则,,即,故,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解题分析】以周期函数和奇函数的性质去求解即可.【题目详解】因为是R上的奇函数,所以,又周期为2,所以,又,所以,故,则对任意,故故答案为:012、【解题分析】本题首先可以根据得出,然后将其化简为,最后带入即可得出结果.【题目详解】令向量与向量之间的夹角为,因为,所以,即,,,,因为,所以,故答案为:.【题目点拨】本题考查向量垂直的相关性质,若两个向量垂直,则这两个向量的数量积为,考查计算能力,考查化归与转化思想,是简单题。13、①.##0.96②.【解题分析】由终边上的点得,,应用二倍角正弦公式求,根据题设描述知在的终边上,结合差角余弦公式求其余弦值即可得横坐标.【题目详解】由题设知:,,∴,所在角为,则,∴点的横坐标为.故答案为:,.14、2【解题分析】将齐次式弦化切即可求解.【题目详解】解:因为,所以,故答案为:2.15、【解题分析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,由CD⊥l,AC⊥l得,l⊥面ACD,可得AD⊥l,因此,∠ADC为二面角α−l−β的平面角,∠ADC=30°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角设AD=2x,则Rt△ACD中,AC=ADsin30°=x,Rt△ABD中,∴Rt△ABC中,故答案为.点睛:求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.16、24:25【解题分析】设三角形三边的边长分别为,分别求出阴影部分面积和大正方形面积即可求解.【题目详解】解:由题意,“赵爽弦图”由四个全等的直角三角形围成,其中,设三角形三边的边长分别为,则大正方形的边长为5,所以大正方形的面积,如图,将延长到,则,所以,又到的距离即为到的距离,所以三角形的面积等于三角形的面积,即,所以“赵爽弦图”外面(图中阴影部分)的面积,所以“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为.故答案为:24:25.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3(2)【解题分析】(1)利用求得.(2)结合指数函数的单调性求得实数的取值范围.【小问1详解】依题意且,【小问2详解】在R上是增函数且所求的取值范围是18、(1)(2)1【解题分析】(1)根据立方差公式可知,要计算及的值就可以求解问题;(2)将方程转化为,再分类讨论即可求解.【小问1详解】,即,则,即,所以因为x是第四像限角,所以,所以,所以【小问2详解】由,可得,则方程可化为,①当时,,显然方程无解;②当时,方程等价于又(当且仅当时取“=”),所以要使得关于x的方程有实数根,则.故a的最小值是119、(1)(2)(3)在区间上单调递增;证明见解析【解题分析】(1)直接将点的坐标代入函数中求出,从而可求出函数解析式,(2)直接利用解析求解即可,(3)利用单调性的定义直接证明即可【小问1详解】∵函数∫过点,∴,∴,得的解析式为:【小问2详解】【小问3详解】在区间上单调递增证明:,且,有∵,∴∴,即∴在区间上单调递增20、(1);(2)当时,;当时,.【解题分析】(1)先由周期为求出,再根据,进行求解即可;(2)先求出,可得,进而求解即可【题目详解】(1)解:∵,∴,又∵,∴,∴,∵,,∴,,∴,,∴的单调递增区间为(2)解:∵∴,∴,∴,∴,∴,当时,,当,即时,【题目点拨】本题考查求正弦型函数的单调区间,考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论