版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省普通高中联合体2024届高一数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则“”是“”的()A充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知集合,若,则()A.-1 B.0C.2 D.33.设函数f(x)=asinx+bcosx,其中a,b∈R,ab≠0,若f(x)≥f()对一切x∈R恒成立,则下列结论中正确的是()A.B.点是函数的一个对称中心C.在上是增函数D.存在直线经过点且与函数的图象有无数多个交点4.设函数的定义域,函数的定义域为,则=A. B.C. D.5.给出下列四种说法:①若平面,直线,则;②若直线,直线,直线,则;③若平面,直线,则;④若直线,,则.其中正确说法的个数为()A.个 B.个C.个 D.个6.若函数在R上单调递减,则实数a的取值范围是()A. B.C. D.7.函数的单调递减区间为A. B.C. D.8.设全集,集合,,则图中阴影部分表示的集合是()A. B.C. D.9.函数f(x)=的零点所在的一个区间是A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)10.下列函数是奇函数且在定义域内是增函数的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知点P(tanα,cosα)在第三象限,则角α的终边在第________象限12.函数的定义域为________13.已知角的终边过点,则___________.14.若、是关于x的方程的两个根,则__________.15.已知=,则=_____.16.已知,均为锐角,,,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若函数在是增函数,求的取值范围;(2)若对于任意的,恒成立,求的取值范围.18.已知函数(1)求当f(x)取得最大值时,x的取值集合;(2)完成下列表格并在给定的坐标系中,画出函数f(x)在上的图象.xy19.已知二次函数满足对任意,都有;;的图象与轴的两个交点之间的距离为.(1)求的解析式;(2)记,(i)若为单调函数,求的取值范围;(ii)记的最小值为,若方程有两个不等的根,求的取值范围.20.已知函数,.(1)求函数图形的对称轴;(2)若,不等式的解集为,,求实数的取值范围.21.已知集合,或(1)若,求a取值范围;(2)若,求a的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据充分条件、必要条件的概念求解即可.【题目详解】因为,所以由,,所以“”是“”成立的充分不必要条件故选:A2、C【解题分析】根据元素与集合的关系列方程求解即可.【题目详解】因为,所以或,而无实数解,所以.故选:C3、D【解题分析】根据f(x)≥f()对一切x∈R恒成立,那么x=取得最小值.结合周期判断各选项即可【题目详解】函数f(x)=asinx+bcosx=周期T=2π由题意x=取得最小值,a,b∈R,ab≠0,∴f()=0不正确;x=取得最小值,那么+=就是相邻的对称中心,∴点(,0)不是函数f(x)的一个对称中心;因为x=取得最小值,根据正弦函数的性质可知,f(x)在是减函数故选D【题目点拨】本题考查三角函数的性质应用,排除法求解,考查转化思想以及计算能力4、B【解题分析】由题意知,,所以,故选B.点睛:集合是高考中必考知识点,一般考查集合的表示、集合的运算比较多.对于集合的表示,特别是描述法的理解,一定要注意集合中元素是什么,然后看清其满足的性质,将其化简;考查集合的运算,多考查交并补运算,注意利用数轴来运算,要特别注意端点的取值是否在集合中,避免出错5、D【解题分析】根据线面关系举反例否定命题,根据面面平行定义证命题正确性.【题目详解】若平面,直线,则可异面;若直线,直线,直线,则可相交,此时平行两平面交线;若直线,,则可相交,此时平行两平面交线;若平面,直线,则无交点,即;选D.【题目点拨】本题考查线面平行关系,考查空间想象能力以及简单推理能力.6、D【解题分析】要保证函数在R上单调递减,需使得和都为减函数,且x=1处函数值满足,由此解得答案.【题目详解】由函数在R上单调递减,可得,解得,故选:D.7、C【解题分析】由幂函数的性质知,函数的图像以原点为对称中心,在均是减函数故答案为C8、B【解题分析】由图中阴影部分可知对应集合为,然后根据集合的基本运算求解即可.【题目详解】解:由图中阴影部分可知对应集合为全集,2,3,4,,集合,,,3,,=,=故选:9、B【解题分析】因为函数f(x)=2+3x在其定义域内是递增的,那么根据f(-1)=,f(0)=1+0=1>0,那么函数的零点存在性定理可知,函数的零点的区间为(-1,0),选B考点:本试题主要考查了函数零点的问题的运用点评:解决该试题的关键是利用零点存在性定理,根据区间端点值的乘积小于零,得到函数的零点的区间10、B【解题分析】根据指数函数、正切函数的性质,结合奇函数和单调性的性质进行逐一判断即可.【题目详解】A:当时,,所以该函数不是奇函数,不符合题意;B:由,设,因为,所以该函数是奇函数,,函数是上的增函数,所以函数是上的增函数,因此符合题意;C:当时,,当时,,显然不符合增函数的性质,故不符合题意;D:当时,,显然不符合增函数的性质,故不符合题意,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、二【解题分析】由点P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,从而得到α所在的象限【题目详解】因为点P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,则角α的终边在第二象限,故答案为二点评:本题考查第三象限内的点的坐标的符号,以及三角函数在各个象限内的符号12、【解题分析】根据偶次方根被开方数为非负数、对数真数大于零列不等式组,解不等式组求得函数的定义域.【题目详解】依题意,解得,故函数的定义域为.故答案为.【题目点拨】本小题主要考查具体函数定义域的求法,属于基础题.13、【解题分析】根据角终边所过的点,求得三角函数,即可求解.【题目详解】因为角的终边过点则所以故答案为:【题目点拨】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.14、【解题分析】先通过根与系数的关系得到的关系,再通过同角三角函数的基本关系即可解得.【题目详解】由题意:,所以或,且,所以,即,因为或,所以.故答案为:.15、##0.6【解题分析】寻找角之间的联系,利用诱导公式计算即可【题目详解】故答案为:16、【解题分析】直接利用两角的和的正切关系式,即可求出结果【题目详解】已知,均锐角,,,则,所以:,故故答案为【题目点拨】本题主要考查了三角函数关系式的恒等变换,以及两角和的正切关系式的应用,其中解答中熟记两角和的正切的公式,准确运算是解答的关键,主要考查学生的运算能力和转化能力,属于基础题型三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)由函数可知对称轴为,由单调性可知,即可求解;(2)整理问题为在时恒成立,设,则可转化问题为在时恒成立,讨论对称轴与的位置关系,进而求解.【小问1详解】因为函数,所以对称轴为,因为在是增函数,所以,解得【小问2详解】因为对于任意的,恒成立,即在时恒成立,所以在时恒成立,设,则对称轴为,即在时恒成立,当,即时,,解得;当,即时,,解得(舍去),故.18、(1);(2)图象见解析.【解题分析】(1)利用整体法求解三角函数最大值时x的取值集合;(2)填写表格,并作图.【小问1详解】由,得故当f(x)取得最大值时,x的取值集合为【小问2详解】函数f(x)在上的图象如下:x0y0219、(1);(2)(i);(ii)或.【解题分析】(1)根据二次函数的对称轴、求参数a、b、c,写出的解析式;(2)(i)利用二次函数的性质,结合的区间单调性求的取值范围;(ii)讨论、、,结合二次函数的性质求最小值的表达式,再令并应用数形结合的方法研究的零点情况求的取值范围.【题目详解】(1)设由题意知:对称轴,,又,则,,设的两根为,,则,,由已知:,解得.(2)(i),其对称轴为为单调函数,或,解得或.的取值范围是.(ii),,对称轴①当,即时,区间单调递增,.②当,即时,在区间单调递减,③当,即时,,函数零点即为方程的根令,即,作出的简图如图所示①当时,,或,解得或,有个零点;②当时,有唯一解,解得,有个零点;③当时,有两个不同解,,解得或,有4个零点;④当时,,,解得,有个零点;⑤当时,无解,无零点综上:当或时,有个零点.【题目点拨】关键点点睛:第二问,(i)分类讨论并结合二次函数区间单调性求参数范围,(ii)分类讨论求最小值的表达式,再应用换元法及数形结合求参数范围.20、(1);(2).【解题分析】(1)利用余弦的降幂扩角公式化简为标准正弦型函数,进而求解对称轴即可;(2)求得函数在区间上的值域,以及绝对值不等式的解集,根据集合之间的包含关系,即可求得参数的取值范围.【题目详解】(1),解得:;(2),,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备维护助理工作总结
- XXX电子科技有限公司员工安全手册(安全操作规程)
- 2025-2030全球汽车主动夜视系统行业调研及趋势分析报告
- 2025年全球及中国台式振动台行业头部企业市场占有率及排名调研报告
- 2025-2030全球监视雷达系统行业调研及趋势分析报告
- 2025-2030全球碳纳米粉行业调研及趋势分析报告
- 2025年全球及中国三重四级杆液质联用仪行业头部企业市场占有率及排名调研报告
- 2025-2030全球DRM数字版权保护技术行业调研及趋势分析报告
- 2025年全球及中国细胞活力检测试剂盒行业头部企业市场占有率及排名调研报告
- 2025-2030全球可重复使用垫料气囊行业调研及趋势分析报告
- 走新型城镇化道路-实现湘潭城乡一体化发展
- 江苏中国中煤能源集团有限公司江苏分公司2025届高校毕业生第二次招聘6人笔试历年参考题库附带答案详解
- 【语文】第23课《“蛟龙”探海》课件 2024-2025学年统编版语文七年级下册
- 2024版冷水机组安装合同
- 北师版七年级数学下册第二章测试题及答案
- GB/T 21369-2024火力发电企业能源计量器具配备和管理要求
- 2025年全体员工安全意识及安全知识培训
- 2025警察公安派出所年终总结工作汇报
- 机动车检测站新换版20241124质量管理手册
- 智研咨询发布-2025年中国少儿编程行业市场竞争格局、行业政策及需求规模预测报告
- 万物有灵且美(读书心得)课件
评论
0/150
提交评论