版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省韩城市司马迁中学高一上数学期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半径为2,圆心角为的扇形的面积为()A. B.C. D.22.下列函数中,在区间上为减函数的是()A. B.C. D.3.总体由编号为01,02,...,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,则选出来的第5个个体的编号为()7961950784031379510320944316831718696254073892615789810641384975A.20 B.18C.17 D.164.已知函数,则()A.5 B.C. D.5.已知,则直线通过()象限A.第一、二、三 B.第一、二、四C.第一、三、四 D.第二、三、四6.从3名男同学,2名女同学中任选2人参加体能测试,则选到的2名同学中至少有一名男同学的概率是()A. B.C. D.7.已知函数,,的零点依次为,则以下排列正确的是()A. B.C. D.8.已知是定义在R上的奇函数,在区间上为增函数,则不等式的解集为()A. B.C. D.9.函数的部分图象大致为()A B.C. D.10.已知映射f:A→B,其中A={a,b},B={1,2},已知a的象为1,则b的象为A.1,2中的一个 B.1,2C.2 D.无法确定二、填空题:本大题共6小题,每小题5分,共30分。11.若关于x的不等式对一切实数x恒成立,则实数k的取值范围是___________.12.函数f(x)=log2(x2-1)的单调递减区间为________13.函数在上是x的减函数,则实数a的取值范围是______14.若函数是幂函数,则函数(其中,)的图象过定点的坐标为__________15.已知集合,,则_________.16.设,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(是常数)是奇函数,且满足.(1)求的值;(2)试判断函数在区间上的单调性并用定义证明.18.在长方体ABCD-A1B1C1D1中,求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC19.已知关于x的不等式对恒成立.(1)求的取值范围;(2)当取得最小值时,求的值.20.果园A占地约3000亩,拟选用果树B进行种植,在相同种植条件下,果树B每亩最多可种植40棵,种植成本(万元)与果树数量(百棵)之间的关系如下表所示.149161(1)根据以上表格中的数据判断:与哪一个更适合作为与的函数模型;(2)已知该果园的年利润(万元)与的关系为,则果树数量为多少时年利润最大?21.设函数()在处取最大值(Ⅰ)求的值;(Ⅱ)在中,分别是角的对边.已知,,,求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】利用扇形的面积公式即得.【题目详解】由题可得.故选:D2、D【解题分析】根据基本初等函数的单调性及复合函数单调性求解.【题目详解】当时,在上单调递减,所以在区间上为增函数;由指数函数单调性知在区间上单调递增;由在区间上为增函数,为增函数,可知在区间上为增函数;知在区间上为减函数.故选:D3、D【解题分析】利用随机数表从给定位置开始依次取两个数字,根据与20的大小关系可得第5个个体的编号.【题目详解】从随机数表的第1行第5列和第6列数字开始由左向右依次选取两个数字,小于或等于20的5个编号分别为:07,03,13,20,16,故第5个个体编号为16.故选:D.【题目点拨】本题考查随机数表抽样,此类问题理解抽样规则是关键,本题属于容易题.4、A【解题分析】分段函数求值,根据自变量的取值范围代相应的对应关系【题目详解】因为所以故选:A5、A【解题分析】根据判断、、的正负号,即可判断直线通过的象限【题目详解】因为,所以,①若则,,直线通过第一、二、三象限②若则,,直线通过第一、二、三象限【题目点拨】本题考查直线,作为选择题6、A【解题分析】先计算一名男同学都没有的概率,再求至少有一名男同学的概率即可.【题目详解】两名同学中一名男同学都没有的概率为,则2名同学中至少有一名男同学的概率是.故选:A.7、B【解题分析】在同一直角坐标系中画出,,与的图像,数形结合即可得解【题目详解】函数,,的零点依次为,在同一直角坐标系中画出,,与的图像如图所示,由图可知,,,满足故选:B.【题目点拨】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解8、C【解题分析】由奇函数知,再结合单调性及得,解不等式即可.【题目详解】由题意知:,又在区间上为增函数,当时,,当时,,由可得,解得.故选:C.9、C【解题分析】根据题意,分析可得函数为奇函数,当时,有,利用排除法分析可得答案.详解】解:根据题意,对于函数,有函数,即函数为奇函数,图象关于原点对称,故排除A、B;当时,,则恒有,排除D;故选:C.10、A【解题分析】根据映射中象与原象定义,元素与元素的对应关系即可判断【题目详解】映射f:A→B,其中A={a,b},B={1,2}已知a的象为1,根据映射的定义,对于集合A中的任意一个元素在集合B中都有唯一的元素和它对应,可得b=1或2,所以选A【题目点拨】本题考查了集合中象与原象的定义,关于对应关系的理解.注意A集合中的任意元素在集合B中必须有对应,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据一元二次不等式与二次函数的关系,可知只需判别式,利用所得不等式求得结果.【题目详解】不等式对一切实数x恒成立,,解得:故答案为:.12、【解题分析】由复合函数同增异减得单调减区间为的单调减区间,且,解得故函数的单调递减区间为13、【解题分析】首先保证真数位置在上恒成立,得到的范围要求,再分和进行讨论,由复合函数的单调性,得到关于的不等式,得到答案.【题目详解】函数,所以真数位置上的在上恒成立,由一次函数保号性可知,,当时,外层函数为减函数,要使为减函数,则为增函数,所以,即,所以,当时,外层函数为增函数,要使为减函数,则为减函数,所以,即,所以,综上可得的范围为.故答案为.【题目点拨】本题考查由复合函数的单调性,求参数的范围,属于中档题.14、(3,0)【解题分析】若函数是幂函数,则,则函数(其中,),令,计算得出:,,其图象过定点的坐标为15、【解题分析】由对数函数单调性,求出集合A,再根据交集的定义即可求解.【题目详解】解:,,,故答案为:.16、【解题分析】根据自变量取值判断使用哪一段解析式求解,分别代入求解即可【题目详解】解:因为,所以,所以故答案为:1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)在区间(0,0.5)上是单调递减的【解题分析】(Ⅰ)∵函数是奇函数,则即∴------------------------2分由得解得∴,.------------------------------------------------------6分(Ⅱ)解法1:由(Ⅰ)知,∴,----------------------------------------8分当时,----------------------------10分∴,即函数在区间上为减函数.------------12分[解法2:设,则==------------------------------10分∵∴,,∴,即∴函数在区间上为减函数.--------------------------12分].18、(1)见解析;(2)见解析【解题分析】(1)推导出AB∥A1B1,由此能证明AB∥平面A1B1C.(2)推导出BC⊥AB,BC⊥BB1,从而BC⊥平面ABB1A1,由此能证明平面ABB1A1⊥平面A1BC【题目详解】证明:(1)在长方体ABCD-A1B1C1D1中,∵AB∥A1B1,且AB⊄平面A1B1C,A1B1⊂平面A1B1C,∴AB∥平面A1B1C(2)在长方体ABCD-A1B1C1D1中,∵BC⊥AB,BC⊥BB1,AB∩BB1=B,∴BC⊥平面ABB1A1,∵BC⊂平面A1BC,∴平面ABB1A1⊥平面A1BC【题目点拨】本题考查线面平行、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查化归与转化思想,是基础题19、(1)(2)【解题分析】(1)根据已知条件,利用判别式小于等于零列不等式可得范围;(2)根据(1)可得,利用转化分母,把正弦和余弦化为正切值,可得答案.【小问1详解】关于x的不等式对恒成立,所以,解得.【小问2详解】由(1)可知,由得.20、(1)更适合作为与的函数模型(2)果树数量为时年利润最大【解题分析】(1)将点代入和,求出两个函数,然后将和代入,看哪个算出的数据接近实际数据哪个就更适合作为与的函数模型.(2)根据(1)可得,利用二次函数的性质求最大利润.【小问1详解】①若选择作为与的函数模型,将的坐标分别带入,得解得此时,当时,,当时,,与表格中的和相差较大,所以不适合作为与的函数模型.②若选择作为与的函数模型,将的坐标分别带入,得解得此时,当时,,当时,,刚好与表格中的和相符合,所以更适合作为与的函数模型.【小问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基础会计课件
- 单位管理制度展示合集员工管理十篇
- 单位管理制度展示大全人事管理篇
- 电子行业年度策略报告:科技自立AI具能
- 单位管理制度品读选集【人力资源管理篇】
- 2024年江苏工程职业技术学院单招职业技能测试题库附答案
- 辽阳检验检测仪器项目投资分析报告
- 2025外来员工劳动合同「版」
- Unit 2 单元课后培优练(原卷版)
- 山东发电机及发电机组制造市场前景及投资研究报告
- 爱上国乐智慧树知到答案章节测试2023年东华理工大学
- 高中新教材化学必修一课后习题答案(人教版)
- GB/T 19326-2022锻制支管座
- GB/T 9740-2008化学试剂蒸发残渣测定通用方法
- GB/T 7424.1-1998光缆第1部分:总规范
- 拘留所教育课件02
- 儿童营养性疾病管理登记表格模板及专案表格模板
- 天津市新版就业、劳动合同登记名册
- 数学分析知识点的总结
- 2023年重症医学科护理工作计划
- 年会抽奖券可编辑模板
评论
0/150
提交评论