2024届吉林省白山一中数学高一上期末学业质量监测模拟试题含解析_第1页
2024届吉林省白山一中数学高一上期末学业质量监测模拟试题含解析_第2页
2024届吉林省白山一中数学高一上期末学业质量监测模拟试题含解析_第3页
2024届吉林省白山一中数学高一上期末学业质量监测模拟试题含解析_第4页
2024届吉林省白山一中数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届吉林省白山一中数学高一上期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数且在上既是奇函数又是增函数,则的图象是A. B.C. D.2.若,则()A. B.C. D.3.设,则A. B.C. D.4.若,则的大小关系是()A. B.C. D.5.已知,则()A.-4 B.4C. D.6.在平行四边形ABCD中,E是CD中点,F是BE中点,若+=m+n,则()A., B.,C., D.,7.下列函数中,在区间单调递增的是()A. B.C. D.8.下列说法不正确的是()A.方向相同大小相等的两个向量相等B.单位向量模长为一个单位C.共线向量又叫平行向量D.若则ABCD四点共线9.根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是(参考数据:lg3≈048)A.1033 B.1053C.1073 D.109310.已知全集U={0,1,2}且={2},则集合A的真子集共有A.3个 B.4个C.5个 D.6个二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数y=sin(x+)(>0,-<)的图象如图所示,则=________________.12.如图,二面角的大小是30°,线段,与所成的角为45°,则与平面所成角的正弦值是__________13.已知,则的值为________14.若x,y∈(0,+∞),且x+4y=1,则的最小值为________.15.如图,点为锐角的终边与单位圆的交点,逆时针旋转得,逆时针旋转得逆时针旋转得,则__________,点的横坐标为_________16.如果二次函数在区间上是增函数,则实数的取值范围为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求满足下列条件的直线方程.(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.18.已知集合为非空数集,定义,.(1)若集合,直接写出集合及;(2)若集合,,且,求证;(3)若集,且,求集合中元素的个数的最大值.19.已知函数,为偶函数(1)求k的值.(2)若函数,是否存在实数m使得的最小值为0,若存在,求出m的值;若不存在,请说明理由20.已知函数..(1)判断函数的奇偶性并证明;(2)若函数在区间上单调递减,且值域为,求实数的取值范围21.在①函数为奇函数;②当时,;③是函数的一个零点这三个条件中任选一个,补充在下面问题中,并解答,已知函数,的图象相邻两条对称轴间的距离为,______.(1)求函数的解析式;(2)求函数在上的单调递增区间.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据题意先得到,,判断其单调性,进而可求出结果.【题目详解】因为函数且在上是奇函数,所以所以,,又因为函数在上是增函数,所以,所以,它的图象可以看作是由函数向左平移一个单位得到,故选D.【题目点拨】本题主要考查函数的奇偶性与单调性以及函数图象变换,熟记函数性质即可,属于常考题型.2、A【解题分析】应用辅助角公式将条件化为,再应用诱导公式求.【题目详解】由题设,,则,又.故选:A3、B【解题分析】函数在上单调递减,所以,函数在上单调递减,所以,所以,答案为B考点:比较大小4、C【解题分析】利用指数函数与对数函数的单调性,把各数与中间值0,1比较即得【题目详解】利用指数函数的单调性知:,即;利用指数函数的单调性知:,即;利用对数函数的单调性知:,即;所以故选:C5、C【解题分析】已知,可得,根据两角差的正切公式计算即可得出结果.【题目详解】已知,则,.故选:C.6、B【解题分析】通过向量之间的关系将转化到平行四边形边上即可【题目详解】由题意可得,同理:,所以所以,故选B.【题目点拨】本题考查向量的线性运算,重点利用向量的加减进行转化,同时,利用向量平行进行代换7、B【解题分析】根据单调性依次判断选项即可得到答案.【题目详解】对选项A,区间有增有减,故A错误,对选项B,,令,,则,因为,在为增函数,在为增函数,所以在为增函数,故B正确.对选项C,,,解得,所以,为减函数,,为增函数,故C错误.对选项D,在为减函数,故D错误.故选:B8、D【解题分析】利用平面向量相等概念判断,利用共线向量和单位向量的定义判断.【题目详解】根据向量相等的概念判断正确;根据单位向量的概念判断正确;根据共线向量的概念判断正确;平行四边形中,因此四点不共线,故错误.故选:.【题目点拨】本题考查了命题真假性的判断及平面向量的基础知识,注意反例的积累,属于基础题.9、D【解题分析】设,两边取对数,,所以,即最接近,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令,并想到两边同时取对数进行求解,对数运算公式包含,,.10、A【解题分析】,所以集合A的真子集的个数为个,故选A.考点:子集二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由图可知,12、【解题分析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,由CD⊥l,AC⊥l得,l⊥面ACD,可得AD⊥l,因此,∠ADC为二面角α−l−β的平面角,∠ADC=30°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角设AD=2x,则Rt△ACD中,AC=ADsin30°=x,Rt△ABD中,∴Rt△ABC中,故答案为.点睛:求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.13、【解题分析】利用正弦、余弦、正切之间的商关系,分式的分子、分母同时除以即可求出分式的值.【题目详解】【题目点拨】本题考查了同角三角函数的平方和关系和商关系,考查了数学运算能力.14、9【解题分析】由x+4y=1,结合目标式,将x+4y替换目标式中的“1”即可得到基本不等式的形式,进而求得它的最小值,注意等号成立的条件【题目详解】∵x,y∈(0,+∞)且x+4y=1∴当且仅当有时取等号∴的最小值为9故答案为:9【题目点拨】本题考查了基本不等式中“1”的代换,注意基本不等式使用条件“一正二定三相等”,属于简单题15、①.##0.96②.【解题分析】由终边上的点得,,应用二倍角正弦公式求,根据题设描述知在的终边上,结合差角余弦公式求其余弦值即可得横坐标.【题目详解】由题设知:,,∴,所在角为,则,∴点的横坐标为.故答案为:,.16、【解题分析】函数对称轴为,则由题意可得,解出不等式即可.【题目详解】∵函数的对称轴为且在区间上是增函数,∴,即.【题目点拨】已知函数在某个区间上的单调性,则这个区间是这个函数对应单调区间的子集.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)3x+4y+15=0(2)4x+3y-12=0或4x-3y+12=0.【解题分析】根据直线经过点A,再根据斜率等于直线3x+8y-1=0斜率2倍求出斜率的值,然后根据直线方程的点斜式写出直线的方程,化为一般式;直线经过点M(0,4),说明直线在y轴的截距为4,可设直线在x轴的截距为a,利用三角形周长为12列方程求出a,利用直线方程的截距式写出直线的方程,然后化为一般方程.试题解析:(1)因为3x+8y-1=0可化为y=-x+,所以直线3x+8y-1=0的斜率为-,则所求直线的斜率k=2×(-)=-又直线经过点(-1,-3),因此所求直线的方程为y+3=-(x+1),即3x+4y+15=0.(2)设直线与x轴的交点为(a,0),因为点M(0,4)在y轴上,所以由题意有4++|a|=12,解得a=±3,所以所求直线的方程为或,即4x+3y-12=0或4x-3y+12=0.【题目点拨】当直线经过点A,并给出斜率的条件时,根据斜率与已知直线的斜率关系求出斜率值,然后根据直线方程的点斜式写出直线的方程,化为一般式;当涉及到直线与梁坐标轴所围成的三角形的周长和面积时,一般利用直线方程的截距式解决问题较方便一些,但使用点斜式也好,截距式也好,它们都有不足之处,点斜式只能表达斜率存在的直线,截距式只能表达截距存在而且不为零的直线,因此使用时要注意补充答案.18、(1),;(2)证明见解析;(3)1347.【解题分析】(1)根据题目定义,直接得到集合A+及A﹣;(2)根据两集合相等即可找到x1,x2,x3,x4的关系;(3)通过假设A集合{m,m+1,m+2,…,4040},m≤2020,m∈N,求出相应的A+及A﹣,通过A+∩A﹣=∅建立不等关系求出相应的值【题目详解】(1)根据题意,由,则,;(2)由于集合,,且,所以中也只包含四个元素,即,剩下的,所以;(3)设满足题意,其中,则,∴,,∴,∵,由容斥原理,中最小的元素为0,最大的元素为,∴,∴,∴,实际上当时满足题意,证明如下:设,则,,依题意有,即,故的最小值为674,于是当时,中元素最多,即时满足题意,综上所述,集合中元素的个数的最大值是1347.【题目点拨】关键点点睛:第三问集合中元素的个数最多时,应满足中的最大值小于中的最小值,另外容斥原理的应用也是解题的关键.19、(1)(2)存在使得的最小值为0【解题分析】(1)利用偶函数的定义可得,化简可得对一切恒成立,进而求得的值;(2)由(1)知,,令,则,再分、、进行讨论即可得解【小问1详解】解:由函数是偶函数可知,,即,所以,即对一切恒成立,所以;【小问2详解】解:由(1)知,,,令,则,①当时,在上单调递增,故,不合题意;②当时,图象对称轴为,则在上单调递增,故,不合题意;③当时,图象对称轴为,当,即时,,令,解得,符合题意;当,即时,,令,解得(舍;综上,存在使得的最小值为020、(1)奇函数(2)【解题分析】(1)先求定义域,再研究与的关系得函数奇偶性;(2)由函数在上的单调性,得函数的值域,又因为值域为,转化为关于和的关系式,由二次函数的图像与性质求的取值范围【题目详解】(1)函数定义域为,且.所以函数为奇函数(2)考察为单调增函数,利用复合函数单调性得到,所以,,即,即为方程的两个根,且,令,满足条件,解得.【题目点拨】判断函数的奇偶性,要先求定义域,判断定义域是否关于原点对称再求与的关系;计算函数的值域,要先根据函数的定义域及单调性求解21、(1)选条件①②③任一个,均有;(2)选条件①②③任一个,函数在上的单调递增区间均为,.【解题分析】(1)由相邻两条对称轴间的距离为,得到;再选择一个条件求解出;(2)由(1)解得的函数,根据复合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论