湖南省、江西省等十四校2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
湖南省、江西省等十四校2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
湖南省、江西省等十四校2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
湖南省、江西省等十四校2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
湖南省、江西省等十四校2024届高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省、江西省等十四校2024届高一数学第一学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.半径为,圆心角为的弧长为()A. B.C. D.2.已知全集,集合则下图中阴影部分所表示的集合为()A. B.C. D.3.直线的斜率为,在y轴上的截距为b,则有()A. B.C. D.4.函数的图象大致是A. B.C. D.5.如图,水平放置的直观图为,,分别与轴、轴平行,是边中点,则关于中的三条线段命题是真命题的是A.最长的是,最短的是 B.最长的是,最短的是C.最长的是,最短的是 D.最长的是,最短的是6.“”是“的最小正周期为”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知,且,则的最小值为A. B.C. D.8.方程的零点所在的区间为()A. B.C. D.9.命题“,”的否定为()A., B.,C., D.,10.函数的大致图象是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如果,且,则化简为_____.12.若函数,,则_________;当时,方程的所有实数根的和为__________.13.若命题“”为真命题,则的取值范围是______14.已知空间中两个点A(1,3,1),B(5,7,5),则|AB|=_____15.给出下列命题:①函数是偶函数;②方程是函数的图象的一条对称轴方程;③在锐角中,;④函数的最小正周期为;⑤函数的对称中心是,,其中正确命题的序号是________.16.某校高中三个年级共有学生2000人,其中高一年级有学生750人,高二年级有学生650人.为了了解学生参加整本书阅读活动的情况,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么在高三年级的学生中应抽取的人数为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知平面直角坐标系内两点A(4,0),B(0,3).(1)求直线AB方程;(2)若直线l平行于直线AB,且到直线AB的距离为2,求直线l的方程.18.已知二次函数fx(1)当对称轴为x=-1时,(i)求实数a的值;(ii)求f(x)在区间-2,2上的值域.(2)解不等式fx19.某中学调查了某班全部45名学生参加社会实践活动和社会公益活动的情况,数据如表单位:人:参加社会公益活动未参加社会公益活动参加社会实践活动304未参加社会实践活动83从该班随机选1名学生,求该学生未参加社会公益活动也未参加社会实践活动的概率;在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,求被选中且未被选中的概率20.已知的内角满足,若,且,满足:,,,为,的夹角,求21.如图,在三棱锥中,.(1)画出二面角的平面角,并求它的度数;(2)求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】利用弧长公式即可得出【题目详解】解:,弧长cm故选:D2、C【解题分析】根据题意,结合Venn图与集合间的基本运算,即可求解.【题目详解】根据题意,易知图中阴影部分所表示.故选:C.3、A【解题分析】将直线方程化为斜截式,由此求得正确答案.【题目详解】,所以.故选:A4、A【解题分析】因为2、4是函数的零点,所以排除B、C;因为时,所以排除D,故选A5、B【解题分析】由直观图可知轴,根据斜二测画法规则,在原图形中应有,又为边上的中线,为直角三角形,为边上的中线,为斜边最长,最短故选B6、A【解题分析】根据函数的最小正周期求得,再根据充分条件和必要条件的定义即可的解.【题目详解】解:由的最小正周期为,可得,所以,所以“”是“的最小正周期为”的充分不必要条件.故选:A.7、C【解题分析】运用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]•()﹣1,化简整理再由基本不等式即可得到最小值【题目详解】由x+y=(x+1)+y﹣1=[(x+1)+y]•1﹣1=[(x+1)+y]•2()﹣1=2(21≥3+47当且仅当x,y=4取得最小值7故选C【题目点拨】本题考查基本不等式的运用:求最值,注意乘1法和满足的条件:一正二定三等,考查运算能力,属于中档题8、C【解题分析】分析函数的单调性,利用零点存在定理可得出结论.【题目详解】因为函数、均为上的增函数,故函数在上也为增函数,因为,,,,由零点存在定理可知,函数的零点所在的区间为.故选:C.9、C【解题分析】由全称命题的否定是特称命题可得答案.【题目详解】根据全称命题的否定是特称命题,所以“,”的否定为“,”.故选:C.10、C【解题分析】由奇偶性定义判断的奇偶性,结合对数、余弦函数的性质判断趋向于0时的变化趋势,应用排除法即可得正确答案.【题目详解】由且定义域,所以为偶函数,排除B、D.又在趋向于0时趋向负无穷,在趋向于0时趋向1,所以在趋向于0时函数值趋向负无穷,排除A.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】由,且,得到是第二象限角,由此能化简【题目详解】解:∵,且,∴是第二象限角,∴故答案为:12、①.0②.4【解题分析】直接计算,可以判断的图象和的图象都关于点中心对称,所以所以两个函数图象的交点都关于点对称,数形结合即可求解.【题目详解】因为,所以,分别作出函数与的图象,图象的对称中心为,令,可得,当时,,所以的对称中心为,所以两个函数图象的交点都关于点对称,当时,两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则,,所以,所以方程的所有实数根的和为,故答案为:,【题目点拨】关键点点睛:本题的关键点是判断出的图象和的图象都关于点中心对称,作出函数图象可知两个函数图象有个交点,设个交点的横坐标分别为,,,,且,则和关于中心对称,和关于中心对称,所以,,即可求解.13、【解题分析】依题意可得恒成立,则,得到一元二次不等式,解得即可;【题目详解】解:依题意可得,命题等价于恒成立,故只需要解得,即故答案为:14、【解题分析】直接代入空间中两点间的距离公式即可得解.【题目详解】∵空间中两个点A(1,3,1),B(5,7,5),∴|AB|4故答案为:4【题目点拨】本题考查空间中两点间的距离公式,属于基础题.15、①②③【解题分析】由诱导公式化简得函数,判断①正确;求出函数的图象的对称轴(),当时,,判断②正确;在锐角中,由化简得到,判断③正确;直接求出函数的最小正周期为,判断④错误;直接求出函数的对称中心是,判断⑤错误.【题目详解】①因为函数,所以函数是偶函数,故①正确;②因为函数,所以函数图象的对称轴(),即(),当时,,故②正确;③在锐角中,,即,所以,故③正确;④函数的最小正周期为,故④错误;⑤令,解得,所以函数的对称中心是,故⑤错误.故答案为:①②③【题目点拨】本题考查三角函数的图象与性质、诱导公式与三角恒等变换,是中档题.16、60【解题分析】求出高三年级的学生人数,再根据分层抽样的方法计算即可.【题目详解】高三年级有学生2000-750-650=600人,用分层抽样的方法从中抽取容量为200的样本,应抽取高三年级学生的人数为200×600故答案为:60三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解题分析】(1)由直线方程的两点式可求解;(2)根据直线的平行关系及平行直线之间的距离公式可求解.【小问1详解】∵A(4,0),B(0,3)由两点式可得直线AB的方程为,即.【小问2详解】由(1)可设直线l:,∴,解得或.∴直线l的方程为或.18、(1)(i)-13;(ii)(2)答案见解析.【解题分析】(1)(i)解方程(a+1)2a=-1即得解;((2)对a分类讨论解不等式.【小问1详解】解:(i)由题得--(a+1)(ii)fx=-1所以当x∈-2,2时,ff(x)所以f(x)在区间-2,2上的值域为[-5【小问2详解】解:ax当a=0时,-x+1≥0,∴x≤1;当a>0时,(ax-1)(x-1)≥0,∴x当0<a<1时,不等式解集为{x|x≥1a或x≤1}当a=1时,不等式的解集为R;当a>1时,不等式的解集为{x|x≥1或x≤1当a<0时,(ax-1)(-x+1)≤0,∴x所以不等式的解集为{x|1综上,当a=0时,不等式的解集为{x|x≤1}当0<a<1时,不等式的解集为{x|x≥1a或当a=1时,不等式的解集为R;当a>1时,不等式的解集为{x|x≥1或x≤1当a<0时,不等式的解集为{x|119、(1);(2).【解题分析】从该班随机选1名学生,利用古典概型能求出该学生未参加社会公益活动也未参加社会实践活动的概率基本事件总数,被选中且未被选中包含的基本事件个数,由此能求出被选中且未被选中的概率【题目详解】解:从该班随机选1名学生,该学生既未参加社会公益活动也未参加社会实践活动的概率在参加社会公益活动,但未参加社会实践活动的8名同学中,有5名男同学,,,,,三名女同学,,,现从这5名男同学和3名女同学中各随机选1人参加岗位体验活动,基本事件总数,被选中且未被选中包含的基本事件个数,被选中且未被选中的概率【题目点拨】本题考查概率的求法,考查古典概型等基础知识,属于基础题20、【解题分析】本题主要是考查了向量的数量积的性质和三角函数中恒等变换的综合运用.先利用得到cosB,然后结合向量的数量积公式以及两角和的正弦公式得到结论.【题目详解】解:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论