黑龙江省佳木斯市2024届数学高一上期末预测试题含解析_第1页
黑龙江省佳木斯市2024届数学高一上期末预测试题含解析_第2页
黑龙江省佳木斯市2024届数学高一上期末预测试题含解析_第3页
黑龙江省佳木斯市2024届数学高一上期末预测试题含解析_第4页
黑龙江省佳木斯市2024届数学高一上期末预测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省佳木斯市2024届数学高一上期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在四面体中,已知棱的长为,其余各棱长都为1,则二面角的平面角的余弦值为()A. B.C. D.2.已知集合,则A. B.C.( D.)3.若圆锥的底面半径为2cm,表面积为12πcm2,则其侧面展开后扇形的圆心角等于()A. B.C. D.4.已知函数的图象关于直线对称,且,则的最小值为()A. B.C. D.5.设全集,,,则A. B.C. D.6.若,则化简=()A. B.C. D.7.已知直线过,,且,则直线的斜率为()A. B.C. D.8.已知某几何体的三视图如图所示,则该几何体的最长棱为()A.4 B.C. D.29.函数的最小值为()A. B.C.0 D.10.已知直线和直线,则与之间的距离是()A. B.C.2 D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数零点的个数为______.12.已知,用m,n表示为___________.13.函数是偶函数,且它的值域为,则__________14.大西洋鲑鱼每年都要逆流而上游回产地产卵,研究鲑鱼的科学家发现鲑鱼的游速v(单位:)可以表示为,其中L表示鲑鱼的耗氧量的单位数,当一条鲑鱼以的速度游动时,它的耗氧量的单位数为___________.15.在平面直角坐标系xOy中,设角α的始边与x轴的非负半轴重合,终边与单位圆交于点P45,35,将射线OP绕坐标原点O按逆时针方向旋转π2后与单位圆交于点Qx216.若函数在上存在零点,则实数的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)判断的奇偶性,并加以证明;(2)求函数的值域18.化简求值:(1).(2)已知都为锐角,,求值.19.已知函数是定义域为R的奇函数.(1)求t的值,并写出的解析式;(2)判断在R上的单调性,并用定义证明;(3)若函数在上的最小值为,求k的值.20.如图所示四棱锥中,底面,四边形中,,,,求四棱锥的体积;求证:平面;在棱上是否存在点异于点,使得平面,若存在,求的值;若不存在,说明理由21.已知集合,,.(1)求,;(2)若,求实数a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由已知可得AD⊥DC又由其余各棱长都为1得正三角形BCD,取CD得中点E,连BE,则BE⊥CD在平面ADC中,过E作AD的平行线交AC于点F,则∠BEF为二面角A﹣CD﹣B的平面角∵EF=(三角形ACD的中位线),BE=(正三角形BCD的高),BF=(等腰RT三角形ABC,F是斜边中点)∴cos∠BEF=故选C.2、C【解题分析】因为所以,故选.考点:1.集合的基本运算;2.简单不等式的解法.3、D【解题分析】利用扇形面积计算公式、弧长公式及其圆的面积计算公式即可得出【题目详解】设圆锥的底面半径为r=2,母线长为R,其侧面展开后扇形的圆心角等于θ由题意可得:,解得R=4又2π×2=Rθ∴θ=π故选D【题目点拨】本题考查了扇形面积计算公式、弧长公式及其圆的面积计算公式,考查了推理能力与计算能力,属于基础题4、D【解题分析】由辅助角公式可得,由函数关于直线对称,可得,可取.从而可得,由此结合,可得一个最大值一个最小值,从而可得结果.【题目详解】,,函数关于直线对称,,即,,故可取故,,即可得:,故可令,,,,即,,其中,,,故选D【题目点拨】本题主要考查辅助角公式的应用、三角函数的最值、三角函数的对称性,转化与划归思想的应用,属于难题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.5、B【解题分析】全集,,,.故选B.6、D【解题分析】根据诱导公式化简即可得答案.【题目详解】解:.故选:D7、A【解题分析】利用,求出直线斜率,利用可得斜率乘积为,即可求解.【题目详解】设直线斜率为,直线斜率为,因为直线过,,所以斜率为,因为,所以,所以,故直线的斜率为.故选:A8、B【解题分析】根据三视图得到几何体的直观图,然后结合图中的数据计算出各棱的长度,进而可得最长棱【题目详解】由三视图可得,该几何体是如图所示的四棱锥,底面是边长为2的正方形,侧面是边长为2的正三角形,且侧面底面根据图形可得四棱锥中的最长棱为和,结合所给数据可得,所以该四棱锥的最长棱为故选B【题目点拨】在由三视图还原空间几何体时,要结合三个视图综合考虑,根据三视图表示的规则,空间几何体的可见轮廓线在三视图中为实线、不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以主视图和俯视图为主,结合左视图进行综合考虑.熟悉常见几何体的三视图,能由三视图得到几何体的直观图是解题关键.考查空间想象能力和计算能力9、C【解题分析】利用对数函数单调性得出函数在时取得最小值【题目详解】,因为是增函数,因此当时,,,当时,,,而时,,所以时,故选:C10、A【解题分析】利用平行线间的距离公式计算即可【题目详解】由平行线间的距离公式得故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、2【解题分析】将函数的零点的个数转化为与的图象的交点个数,在同一直角坐标系中画出图象即可得答案.【题目详解】解:令,这,则函数的零点的个数即为与的图象的交点个数,如图:由图象可知,与的图象的交点个数为2个,即函数的零点的个数为2.故答案为:2.【题目点拨】本题考查函数零点个数问题,可转化为函数图象交点个数,考查学生的作图能力和转化能力,是基础题.12、【解题分析】结合换底公式以及对数的运算法则即可求出结果.详解】,故答案为:.13、【解题分析】展开,由是偶函数得到或,分别讨论和时的值域,确定,的值,求出结果.【题目详解】解:为偶函数,所以,即或,当时,值域不符合,所以不成立;当时,,若值域为,则,所以.故答案为:.14、8100【解题分析】将代入,化简即可得答案.【题目详解】因为鲑鱼的游速v(单位:)可以表示为:,所以,当一条鲑鱼以的速度游动时,,∴,∴故答案为:8100.15、①.34##0.75②.-【解题分析】利用三角函数的定义和诱导公式求出结果【题目详解】由三角函数的定义及已知可得:sinα=3所以tan又x故答案为:34,16、【解题分析】分和并结合图象讨论即可【题目详解】解:令,则有,原命题等价于函数与在上有交点,又因为在上单调递减,且当时,,在上单调递增,当时,作出两函数的图像,则两函数在上必有交点,满足题意;当时,如图所示,只需,解得,即,综上所述实数的取值范围是.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)是奇函数;证明见解析(2)【解题分析】(1)首先确定定义域,根据奇偶性定义可得结论;(2)令,可求得的范围,进而可得的值域.【小问1详解】由得:,定义域为,关于原点对称;,,为奇函数;【小问2详解】令,且,,或,或,的值域为.18、(1);(2).【解题分析】(1)利用诱导公式以及两角和的正切公式结合正、余弦的齐次式计算化简原式;(2)先计算出的值,然后根据角的配凑以及两角差的余弦公式求解出的值.【题目详解】(1)解:原式;(2)解:因为都为锐角,,所以则.19、(1)或,;(2)R上单调递增,证明见解析;(3)【解题分析】(1)是定义域为R的奇函数,利用奇函数的必要条件,求出的值,进而求出,验证是否为奇函数;(2)可判断在上为增函数,用函数的单调性定义加以证明,取两个不等的自变量,对应函数值做差,因式分解,判断函数值差的符号,即可证明结论;(3)由,换元令,,由(2)得,,根据条件转化为在最小值为-2,对二次函数配方,求出对称轴,分类讨论求出最小值,即可求解【题目详解】解:(1)因为是定义域为R的奇函数,所以,即,解得或,可知,此时满足,所以.(2)在R上单调递增.证明如下:设,则.因为,所以,所以,可得.因为当时,有,所以R单调递增.(3)由(1)可知,令,则,因为是增函数,且,所以.因为在上的最小值为,所以在上的最小值为.因为,所以当时,,解得或(舍去);当时,,不合题意,舍去.综上可知,.【题目点拨】本题考查函数的奇偶性应用和单调性的证明,考查复合函数的最值,用换元方法,将问题化归为二次函数函数的最值,属于较难题.20、(1)4;(2)见解析;(3)不存在.【解题分析】利用四边形是直角梯形,求出,结合底面,利用棱锥的体积公式求解即可求;先证明,,结合,利用线面垂直的判定定理可得平面;用反证法证明,假设存在点异于点使得平面证明平面平面,与平面与平面相交相矛盾,从而可得结论【题目详解】显然四边形ABCD是直角梯形,又底面平面ABCD,平面ABCD,在直角梯形ABCD中,,,,即又,平面;不存在,下面用反证法进行证明假设存在点异于点使得平面PAD,且平面PAD,平面PAD,平面PAD又,平面平面PAD而平面PBC与平面PAD相交,得出矛盾【题目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论