山东省泰安市肥城市2024届数学高一上期末监测试题含解析_第1页
山东省泰安市肥城市2024届数学高一上期末监测试题含解析_第2页
山东省泰安市肥城市2024届数学高一上期末监测试题含解析_第3页
山东省泰安市肥城市2024届数学高一上期末监测试题含解析_第4页
山东省泰安市肥城市2024届数学高一上期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省泰安市肥城市2024届数学高一上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数为奇函数,且当时,,则()A. B.C. D.2.比较,,的大小()A. B.C. D.3.函数的图像为()A. B.C. D.4.方程的所有实数根组成的集合为()A. B.C. D.5.已知向量,,则向量与的夹角为()A. B.C. D.6.某同学用“五点法”画函数fxωx+φ0ππ3π2xπ5πA05-50根据表格中的数据,函数fxA.fx=5C.fx=57.过点,直线的斜率等于1,则m的值为()A.1 B.4C.1或3 D.1或48.下列各组函数中,表示同一个函数的是()A.与B.与C.与D.与9.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.10.设,为两个不同的平面,,为两条不同的直线,则下列命题中正确的为()A.若,,则B.若,,则C.若,,则D.若,,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数的图象与函数及函数的图象分别交于两点,则的值为__________12.已知圆心为(1,1),经过点(4,5),则圆的标准方程为_____________________.13.已知函数的图像恒过定点,则的坐标为_____________.14.已知函数的图象上关于轴对称的点恰有9对,则实数的取值范围_________.15.已知函数的图像恒过定点,若点也在函数的图像上,则__________16.已知向量满足,且,则与的夹角为_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某地区今年1月,2月,3月患某种传染病的人数分别为52,54,58为了预测以后各月的患病人数,甲选择的了模型,乙选择了模型,其中y为患病人数,x为月份数,a,b,c,p,q,r都是常数,结果4月,5月,6月份的患病人数分别为66,82,115,1你认为谁选择的模型较好?需说明理由2至少要经过多少个月患该传染病的人数将会超过2000人?试用你选择的较好模型解决上述问题18.已知圆外有一点,过点作直线(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长19.已知角的终边过点,且.(1)求的值;(2)求的值.20.已知,若在上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断函数的单调性,并求出的最小值.21.如图,在平面四边形ABCD中,AB=2,CD=23,∠DAB=∠CDB=θ,0<θ<π2,∠ADB=π(1)求四边形ABCD面积的最大值;(2)求DA+DB+DE的取值范围

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】根据奇函数的定义得到,又由解析式得到,进而得到结果.【题目详解】因为函数为奇函数,故得到当时,,故选:C.2、D【解题分析】由对数函数的单调性判断出,再根据幂函数在上单调递减判断出,即可确定大小关系.【题目详解】因为,,所以故选:D【题目点拨】本题考查利用对数函数及幂函数的单调性比较数的大小,属于基础题.3、B【解题分析】首先判断函数的奇偶性,再根据函数值的特征,利用排除法判断可得;【题目详解】解:因为,定义域为,且,故函数为偶函数,函数图象关于轴对称,故排除A、D,当时,,所以,故排除C,故选:B4、C【解题分析】首先求出方程的解,再根据集合的表示方法判断即可;【题目详解】解:由,解得或,所以方程的所有实数根组成的集合为;故选:C5、C【解题分析】结合平面向量线性运算的坐标表示求出,然后代入模长公式分别求出和,进而根据平面向量的夹角公式即可求出夹角的余弦值,进而求出结果.【题目详解】,,,,从而,且,记与的夹角为,则又,,故选:6、A【解题分析】根据函数最值,可求得A值,根据周期公式,可求得ω值,代入特殊点,可求得φ值,即可得答案.【题目详解】由题意得最大值为5,最小值为-5,所以A=5,T2=5π6-又2×π3+φ=所以fx的解析式可以是故选:A7、A【解题分析】解方程即得解.【题目详解】由题得.故选:A【题目点拨】本题主要考查斜率的计算,意在考查学生对该知识的理解掌握水平.8、B【解题分析】根据两个函数的定义域相同且对应关系也相同,逐项判断即可【题目详解】由于函数的定义域为,函数的定义域为,所以与不是同一个函数,故A错误;由于的定义域为,函数且定义域为,所以与是同一函数,故B正确;在函数中,,解得或,所以函数的定义域为,在函数中,,解得,所以的定义域为,所以与不是同一函数,故C错误;由于函数的定义域为,函数定义域为为,所以与不是同一函数,故D错误;故选:B.9、D【解题分析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等10、D【解题分析】根据点线面位置关系,其中D选项是面面垂直的判定定理,在具体物体中辨析剩余三个选项.【题目详解】考虑在如图长方体中,平面,但不能得出平面,所以选项A错误;平面,平面,但不能得出,所以选项B错误;平面平面,平面,但不能得出平面;其中D选项是面面垂直的判定定理.故选:D【题目点拨】此题考查线面平行与垂直的辨析,关键在于准确掌握基本定理,并应用定理进行推导及辨析.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】利用函数及函数的图象关于直线对称可得点在函数的图象上,进而可得的值【题目详解】由题意得函数及函数的图象关于直线对称,又函数的图象与函数及函数的图象分别交于两点,所以,从而点的坐标为由题意得点在函数的图象上,所以,所以故答案为4【题目点拨】解答本题的关键有两个:一是弄清函数及函数的图象关于直线对称,从而得到点也关于直线对称,进而得到,故得到点的坐标为;二是根据点在函数的图象上得到所求值.考查理解和运用能力,具有灵活性和综合性12、【解题分析】设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程【题目详解】设圆的标准方程为(x-1)2+(y-1)2=R2,由圆经过点(4,5)得R2=25,从而所求方程为(x-1)2+(y-1)2=25,故答案为(x-1)2+(y-1)2=25【题目点拨】本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径13、【解题分析】由过定点(0,1),借助于图像平移即可.【题目详解】过定点(0,1),而可以看成的图像右移3个单位,再下移2个点位得到的,所以函数的图像恒过定点即A故答案为:【题目点拨】指数函数图像恒过(0,1),对数函数图像恒过(1,0).14、【解题分析】求出函数关于轴对称的图像,利用数形结合可得到结论.【题目详解】若,则,,设为关于轴对称的图像,画出的图像,要使图像上有至少9个点关于轴对称,即与有至少9个交点,则,且满足,即则,解得,故答案为【题目点拨】解分段函数或两个函数对称性的题目时,可先将一个函数的对称图像求出,利用数形结合的方式得出参数的取值范围;遇到题目中指对函数时,需要讨论底数的范围,分别画出图像进行讨论.15、1【解题分析】首先确定点A的坐标,然后求解函数的解析式,最后求解的值即可.【题目详解】令可得,此时,据此可知点A的坐标为,点在函数的图像上,故,解得:,函数的解析式为,则.【题目点拨】本题主要考查函数恒过定点问题,指数运算法则,对数运算法则等知识,意在考学生的转化能力和计算求解能力.16、##【解题分析】根据平面向量的夹角公式即可求出【题目详解】设与的夹角为,由夹角余弦公式,解得故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)应将作为模拟函数,理由见解析;(2)个月.【解题分析】根据前3个月的数据求出两个函数模型的解析式,再计算4,5,6月的数据,与真实值比较得出结论;由(1),列不等式求解,即可得出结论【题目详解】由题意,把,2,3代入得:,解得,,,所以,所以,,;把,2,3代入,得:,解得,,,所以,所以,,;、、更接近真实值,应将作为模拟函数令,解得,至少经过11个月患该传染病的人数将会超过2000人【题目点拨】本题主要考查了函数的实际应用问题,以及指数与对数的运算性质的应用,其中解答中认真审题,正确理解题意,求解函数的解析式是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.18、(1)或(2)【解题分析】(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线距离,由弦长公式即可得出答案.【题目详解】解:(1)由题意可得,直线与圆相切当斜率不存在时,直线的方程为,满足题意当斜率存在时,设直线的方程为,即∴,解得∴直线的方程为∴直线的方程为或(2)当直线的倾斜角为时,直线的方程为圆心到直线的距离为∴弦长为【题目点拨】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力.19、(1)(2)【解题分析】(1)任意角的三角函数的定义求得x的值,可得sinα和tanα的值,再利用同角三角函数的基本关系,求得要求式子的值;(2)利用两角和差的三角公式、二倍角公式,化简所给的式子,可得结果【题目详解】由条件知,解得,故.故,(1)原式==(2)原式.【题目点拨】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,两角和差的三角公式的应用,属于基础题20、(1);(2)答案见解析.【解题分析】解:(1)函数的对称轴为直线,而∴在上最小值为,①当时,即时,②当2时,即时,,(2)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.21、(1)2+(2)2,1+2【解题分析】(1)依题意可得DA=2cosθ,DB=2sinθ,再由∠CDB=θ,得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论