2024届广西玉林市博白县高一上数学期末教学质量检测模拟试题含解析_第1页
2024届广西玉林市博白县高一上数学期末教学质量检测模拟试题含解析_第2页
2024届广西玉林市博白县高一上数学期末教学质量检测模拟试题含解析_第3页
2024届广西玉林市博白县高一上数学期末教学质量检测模拟试题含解析_第4页
2024届广西玉林市博白县高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广西玉林市博白县高一上数学期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集是()A B.C.或 D.或2.在中,,BC边上的高等于,则()A. B.C. D.3.已知函数,若方程有五个不同的实数根,则实数的取值范围为()A. B.C. D.4.如图,其所对应的函数可能是()A B.C. D.5.在下列区间中,函数f(x)=ex+2x﹣5的零点所在的区间为()A.(﹣1,0) B.(0,1)C.(1,2) D.(2,3)6.已知为定义在上的偶函数,,且当时,单调递增,则不等式的解集为()A. B.C. D.7.已知:,:,若是的必要不充分条件,则实数的取值范围是()A. B.C. D.8.不等式成立x的取值集合为()A. B.C. D.9.“是”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分又不必要10.的值是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若在上恒成立,则k的取值范围是______.12.若函数y=是函数的反函数,则_________________13.已知函数的值域为,则实数的取值范围是________14.当时,函数取得最大值,则___________.15.已知,则的最小值为___________16.函数定义域为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,试判断并证明其单调性.(2)若存在,使得成立,求实数的取值范围.18.如图,弹簧挂着的小球做上下振动,它在(单位:)时相对于平衡位置(静止时的位置)的高度(单位:)由关系式确定,其中,,.在一次振动中,小球从最高点运动至最低点所用时间为.且最高点与最低点间的距离为(1)求小球相对平衡位置的高度(单位:)和时间(单位:)之间的函数关系;(2)小球在内经过最高点的次数恰为50次,求的取值范围19.如图,在棱长都相等的正三棱柱ABC-A1B1C1中,D,E分别为AA1,B1C的中点.(1)求证:DE平面ABC;(2)求证:B1C⊥平面BDE.20.设函数(1)若函数的图象关于原点对称,求函数的零点;(2)若函数在,的最大值为,求实数的值21.已知函数f(x)=2x(1)求a及f(-2)的值;(2)判断f(x)的奇偶性并证明;(3)若当x∈(0,+∞)时,x2

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】将分式不等式移项、通分,再转化为等价一元二次不等式,解得即可;【题目详解】解:∵,,即,等价于且,解得或,∴所求不等式的解集为或,故选:D.2、C【解题分析】设,故选C.考点:解三角形.3、A【解题分析】由可得或,数形结合可方程只有解,则直线与曲线有个交点,结合图象可得出实数的取值范围.【题目详解】由可得或,当时,;当时,.作出函数、、图象如下图所示:由图可知,直线与曲线有个交点,即方程只有解,所以,方程有解,即直线与曲线有个交点,则.故选:A.4、B【解题分析】代入特殊点的坐标即可判断答案.【题目详解】设函数为,由图可知,,排除C,D,又,排除A.故选:B.5、C【解题分析】由零点存在性定理即可得出选项.【题目详解】由函数为连续函数,且,,所以,所以零点所在的区间为,故选:C【题目点拨】本题主要考查零点存在性定理,在运用零点存在性定理时,函数为连续函数,属于基础题.6、B【解题分析】根据给定条件,探讨函数的性质,再把不等式等价转化,利用的性质求解作答.【题目详解】因为定义在上的偶函数,则,即是R上的偶函数,又在上单调递增,则在上单调递减,,即,因此,,平方整理得:,解得,所以原不等式的解集是.故选:B7、C【解题分析】求解不等式化简集合,,再由题意可得,由此可得的取值范围【题目详解】解:由,即,解得或,所以或,,命题是命题的必要不充分条件,,则实数的取值范围是故选:C8、B【解题分析】先求出时,不等式的解集,然后根据周期性即可得答案.【题目详解】解:不等式,当时,由可得,又最小正周期为,所以不等式成立的x的取值集合为.故选:B.9、A【解题分析】根据充分必要条件的定义判断【题目详解】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x=1或x=3,不是必要条件.故选:A.10、B【解题分析】利用诱导公式求解.【题目详解】解:由诱导公式得,故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】首先参变分离得到在上恒成立,接着分段求出函数的最小值,最后给出k的取值范围即可.【题目详解】因为在上恒成立,所以在上恒成立,当时,,所以,所以,所以;当时,,所以,所以,所以;综上:k的取值范围为.故答案为:.【题目点拨】本题是含参数的不等式恒成立问题,此类问题都可转化为最值问题,即f(x)<a恒成立⇔a>f(x)max,f(x)>a恒成立⇔a<f(x)min.12、0【解题分析】可得,再代值求解的值即可【题目详解】的反函数为,则,则,则.故答案为:013、【解题分析】将题意等价于的值域包含,讨论和结合化简即可.【题目详解】解:要使函数的值域为则的值域包含①当即时,值域为包含,故符合条件②当时综上,实数的取值范围是故答案为:【题目点拨】一元二次不等式常考题型:(1)一元二次不等式在上恒成立问题:解决此类问题常利用一元二次不等式在上恒成立的条件,注意如果不等式恒成立,不要忽略时的情况.(2)在给定区间上的恒成立问题求解方法:若在集合中恒成立,即集合是不等式的解集的子集,可以先求解集,再由子集的含义求解参数的值(或范围).14、##【解题分析】由辅助角公式,正弦函数的性质求出,,再根据两角和的正切和公式,诱导公式求.【题目详解】(其中,),当时,函数取得最大值∴,,即,,所以,.故答案为:.15、【解题分析】根据基本不等式,结合代数式的恒等变形进行求解即可.【题目详解】解:因为a>0,b>0,且4a+b=2,所以有:,当且仅当时取等号,即时取等号,故答案为:.16、【解题分析】解余弦不等式,即可得出其定义域.【题目详解】由对数函数的定义知即,∴,∴函数的定义域为。故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)单调递增,证明见解析;(2).【解题分析】(1)利用单调性定义证明的单调性;(2)根据奇偶性定义判断奇偶性,结合(1)的区间单调性确定上的单调性,进而求的值域,令将问题转化为求参数范围.【小问1详解】在上单调递增,证明如下:,且,则,由得:,,所以,即在上的单调递增【小问2详解】由题设,使,又,即是偶函数,结合(1)知:在单调递减,在上单调递增,又,所以,即,令,则使,可得,令在单调递增,故;所以,即.18、(1),;(2)【解题分析】(1)首先根据题意得到,,从而得到,(2)根据题意,当时,小球第一次到达最高点,从而得到,再根据周期为,即可得到.【题目详解】(1)因为小球振动过程中最高点与最低点的距离为,所以因为在一次振动中,小球从最高点运动至最低点所用时间为,所以周期为2,即,所以所以,(2)由题意,当时,小球第一次到达最高点,以后每隔一个周期都出现一次最高点,因为小球在内经过最高点的次数恰为50次,所以因为,所以,所以的取值范围为(注:的取值范围不考虑开闭)19、(1)证明过程见解析;(2)证明过程见解析.【解题分析】(1)根据面面平行的判定定理,结合线面平行的判定定理、面面平行的性质进行证明即可;(2)根据正三棱柱的几何性质,结合面面垂直的性质定理、线面垂直的判定定理、面面平行的性质定理进行证明即可.【小问1详解】设G是CC1的中点,连接,因为E为B1C的中点,所以,而,所以,因为平面ABC,平面ABC,所以平面ABC,同理可证平面ABC,因为平面,且,所以面平面ABC,而平面,所以DE平面ABC;【小问2详解】设是的中点,连接,因为E为B1C的中点,所以,而,所以,由(1)可知:面平面ABC,平面平面,平面平面,因此,在正三棱柱ABC-A1B1C1中,平面平面ABC,而平面平面ABC,因为ABC是正三角形,是的中点,所以,因此平面,而平面,因此,而,所以,因为正三棱柱ABC-A1B1C1中棱长都相等,所以,而E分别为B1C的中点,所以,而平面BDE,,所以B1C⊥平面BDE.20、(1)(2)【解题分析】(1)通过,求出.得到函数的解析式,解方程,求解函数的零点即可(2)利用换元法令,,,结合二次函数的性质求解函数的最值,推出结果即可【小问1详解】解:的图象关于原点对称,奇函数,,,即,.所以,所以,令,则,,又,,解得,即,所以函数的零点为【小问2详解】解:因为,,令,则,,,对称轴,当,即时,,;②当,即时,,(舍;综上:实数的值为21、(1)a=-1,f(-2)=-(2)f(x)是奇函数,证明见解析(3)(-【解题分析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论