陕西省西安高新第二初级中学2024届数学九上期末质量跟踪监视模拟试题含解析_第1页
陕西省西安高新第二初级中学2024届数学九上期末质量跟踪监视模拟试题含解析_第2页
陕西省西安高新第二初级中学2024届数学九上期末质量跟踪监视模拟试题含解析_第3页
陕西省西安高新第二初级中学2024届数学九上期末质量跟踪监视模拟试题含解析_第4页
陕西省西安高新第二初级中学2024届数学九上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安高新第二初级中学2024届数学九上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.一个不透明的袋子中装有10个只有颜色不同的小球,其中2个红球,3个黄球,5个绿球,从袋子中任意摸出一个球,则摸出的球是绿球的概率为()A. B. C. D.2.如图,三个边长均为的正方形重叠在一起,、是其中两个正方形对角线的交点,则两个阴影部分面积之和是()A. B. C. D.3.下列事件中是随机事件的个数是()①投掷一枚硬币,正面朝上;②五边形的内角和是540°;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;④一个图形平移后与原来的图形不全等.A.0 B.1 C.2 D.34.若一次函数的图象不经过第二象限,则关于的方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定5.方程x2=3x的解为()A.x=3 B.x=0 C.x1=0,x2=﹣3 D.x1=0,x2=36.如图,正比例函数的图像与反比例函数的图象相交于A、B两点,其中点A的横坐标为2,当时,x的取值范围是()A.x<-2或x>2 B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>27.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高(点在同一条直线上).已知小明身高是,则楼高为()A. B. C. D.8.甲袋中装有形状、大小与质地都相同的红球3个,乙袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A.从甲袋中随机摸出1个球,是黄球B.从甲袋中随机摸出1个球,是红球C.从乙袋中随机摸出1个球,是红球或黄球D.从乙袋中随机摸出1个球,是黄球9.已知关于x的一元二次方程有一个根为,则a的值为()A.0 B. C.1 D.10.抛物线y=﹣2x2经过平移得到y=﹣2(x+1)2﹣3,平移方法是()A.向左平移1个单位,再向下平移3个单位 B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位 D.向右平移1个单位,再向上平移3个单位二、填空题(每小题3分,共24分)11.两个相似多边形的一组对应边分别为2cm和3cm,那么对应的这两个多边形的面积比是__________12.一元二次方程(x﹣1)2=1的解是_____.13.若是关于的一元二次方程,则________.14.如图,在中,,按以下步骤作图:在上分别截取使分别以为圆心,以大于的长为半径作弧,两弧在内交于点③作射线交于点,则_______.15.若如果x:y=3:1,那么x:(x-y)的值为_______.16.如图,要拧开一个边长为的正六边形螺帽,扳手张开的开口至少为__________.17.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.18.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30°,AB=BO,反比例函数y=kx(x<0)的图象经过点A,若S△AOB=3,则k的值为________三、解答题(共66分)19.(10分)如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若草坪部分总面积为112m2,求小路的宽.20.(6分)如图,△ABC内接于⊙O,AB=AC=10,BC=12,点E是弧BC的中点.(1)过点E作BC的平行线交AB的延长线于点D,求证:DE是⊙O的切线.(2)点F是弧AC的中点,求EF的长.21.(6分)如图3,小明用一张边长为的正方形硬纸板设计一个无盖的长方体纸盒,从四个角各剪去一个边长为的正方形,再折成如图3所示的无盖纸盒,记它的容积为.(3)关于的函数表达式是__________,自变量的取值范围是___________.(3)为探究随的变化规律,小明类比二次函数进行了如下探究:①列表:请你补充表格中的数据:33.533.533.53333.533.53.53②描点:把上表中各组对应值作为点的坐标,在平面直角坐标系中描出相应的点;③连线:用光滑的曲线顺次连结各点.(3)利用函数图象解决:若该纸盒的容积超过,估计正方形边长的取值范围.(保留一位小数)22.(8分)如图正方形ABCD中,E是BC边的中点,AE与BD相交于F点,△DEF的面积是1,求正方形ABCD的面积.23.(8分)如图1,在△ABC中,AB=BC=20,cosA=,点D为AC边上的动点(点D不与点A,C重合),以D为顶点作∠BDF=∠A,射线DE交BC边于点E,过点B作BF⊥BD交射线DE于点F,连接CF.(1)求证:△ABD∽△CDE;(2)当DE∥AB时(如图2),求AD的长;(3)点D在AC边上运动的过程中,若DF=CF,则CD=.24.(8分)如图,已知抛物线y=-x2+mx+3与x轴交于点A、B两点,与y轴交于C点,点B的坐标为(3,0),抛物线与直线y=-x+3交于C、D两点.连接BD、AD.(1)求m的值.(2)抛物线上有一点P,满足S△ABP=4S△ABD,求点P的坐标.25.(10分)如图,在口ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD(1)求证:△ABF∽△CEB(2)若△DEF的面积为2,求△CEB的面积26.(10分)(2016湖南省永州市)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【题目详解】解:绿球的概率:P==,故选:D.【题目点拨】本题考查概率相关概念,熟练运用概率公式计算是解题的关键.2、A【分析】连接AN,CN,通过将每部分阴影的面积都转化为正方形ACFE的面积的,则答案可求.【题目详解】如图,连接AN,CN∵四边形ACFE是正方形∴∵,∴∴∴所以四边形BCDN的面积为正方形ACFE的面积的同理可得另一部分阴影的面积也是正方形ACFE的面积的∴两部分阴影部分的面积之和为正方形ACFE的面积的即故选A【题目点拨】本题主要考查不规则图形的面积,能够利用全等三角形对面积进行转化是解题的关键.3、C【分析】根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】①掷一枚硬币正面朝上是随机事件;②五边形的内角和是540°是必然事件;③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品是随机事件;④一个图形平移后与原来的图形不全等是不可能事件;则是随机事件的有①③,共2个;故选:C.【题目点拨】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、A【分析】利用一次函数性质得出k>0,b≤0,再判断出△=k2-4b>0,即可求解.【题目详解】解:一次函数的图象不经过第二象限,,,,方程有两个不相等的实数根.故选.【题目点拨】本题考查的是一元二次方程的根的判别式,熟练掌握一次函数的图像和一元二次方程根的判别式是解题的关键.5、D【分析】根据因式分解法解一元二次方程,即可求解.【题目详解】∵x2﹣1x=0,∴x(x﹣1)=0,∴x=0或x﹣1=0,解得:x1=0,x2=1.故选:D.【题目点拨】本题主要考查一元二次方程的解法,掌握因式分解法解方程,是解题的关键.6、D【分析】先根据反比例函数与正比例函数的性质求出B点坐标,再由函数图象即可得出结论.【题目详解】解:∵反比例函数与正比例函数的图象均关于原点对称,

∴A、B两点关于原点对称,

∵点A的横坐标为1,∴点B的横坐标为-1,

∵由函数图象可知,当-1<x<0或x>1时函数y1=k1x的图象在的上方,

∴当y1>y1时,x的取值范围是-1<x<0或x>1.

故选:D.【题目点拨】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y1时x的取值范围是解答此题的关键.7、B【分析】过点C作CN⊥AB,可得四边形CDME、ACDN是矩形,即可证明,从而得出AN,进而求得AB的长.【题目详解】过点C作CN⊥AB,垂足为N,交EF于M点,

∴四边形CDEM、BDCN是矩形,

∴,

∴,依题意知,EF∥AB,

∴,

∴,即:,

∴AN=20,

(米),

答:楼高为21.2米.

故选:B.【题目点拨】本题主要考查了相似三角形的应用,把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.8、D【解题分析】根据事件发生的可能性大小判断相应事件的类型即可.【题目详解】A.从甲袋中随机摸出1个球,是黄球是不可能事件;B.从甲袋中随机摸出1个球,是红球是必然事件;C.从乙袋中随机摸出1个球,是红球或黄球是必然事件;D.从乙袋中随机摸出1个球,是黄球是随机事件.故选:D.【题目点拨】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9、D【分析】根据一元二次方程的定义,再将代入原式,即可得到答案.【题目详解】解:∵关于x的一元二次方程有一个根为,∴,,则a的值为:.故选D.【题目点拨】本题考查一元二次方程,解题的关键是熟练掌握一元二次方程的定义.10、A【分析】由抛物线y=−2x2得到顶点坐标为(0,0),而平移后抛物线y=−2(x+1)2−3的顶点坐标为(−1,−3),根据顶点坐标的变化寻找平移方法.【题目详解】根据抛物线y=−2x2得到顶点坐标为(0,0),而平移后抛物线y=−2(x+1)2−3的顶点坐标为(−1,−3),∴平移方法为:向左平移1个单位,再向下平移3个单位.故选:A.【题目点拨】本题主要考查了抛物线的平移,熟练掌握相关概念是解题关键.二、填空题(每小题3分,共24分)11、4:9【分析】根据相似三角形面积的比等于相似比的平方列式计算即可.【题目详解】解:因为两个三角形相似,

∴较小三角形与较大三角形的面积比为()2=,故答案为:.【题目点拨】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.12、x=2或0【分析】根据一元二次方程的解法即可求出答案.【题目详解】解:∵(x﹣1)2=1,∴x﹣1=±1,∴x=2或0故答案为:x=2或0【题目点拨】本题主要考查解一元二次方程的方法,形如x2=p或(nx+m)2=p(p⩾0)的一元二次方程可采用直接开平方的方法解一元二次方程.13、1【分析】根据一元二次方程的定义,从而列出关于m的关系式,求出答案.【题目详解】根据题意可知:m+1≠0且|m|+1=2,解得:m=1,故答案为m=1.【题目点拨】本题主要考查了一元二次方程的定义,解本题的要点在于知道一元二次方程中二次项系数不能为0.14、【分析】由已知可求BC=6,作,由作图知平分,依据知,再证得可知BE=2,设,则,在中得,解之可得答案.【题目详解】解:如图所示,过点作于点,由作图知平分,,,,,,,∴,∵在中,,,设,则在中∴,解得:,即,故选:.【题目点拨】本题综合考查了角平分线的尺规作图及角平分线的性质、勾股定理等知识,利用勾股定理构建方程求解是解题关键.15、【分析】根据x:y=3:1,则可设x=3a,y=a,即可计算x:(x-y)的值.【题目详解】解:设x=3a,y=a,则x:(x-y)=3a:(3a-a)=,故答案为:.【题目点拨】本题考查了比的性质,解题的关键是根据已有比例关系,设出x、y的值.16、【分析】根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.【题目详解】设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=8mm,∠AOB=60°,∴cos∠BAC=,∴AM=8×=4(mm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC=AC,∴AC=2AM=8(mm).故答案为:.【题目点拨】本题考查了正多边形和圆的知识.构造一个由半径、半边、边心距组成的直角三角形,运用锐角三角函数进行求解是解此题的关键.17、3﹣【分析】根据图形可以求得BF的长,然后根据图形即可求得S1﹣S2的值.【题目详解】解:∵在矩形ABCD中,AB=2,BC=,F是AB中点,∴BF=BG=1,∴S1=S矩形ABCD-S扇形ADE﹣S扇形BGF+S2,∴S1-S2=2×--=3-,故答案为:3﹣.【题目点拨】此题考查的是求不规则图形的面积,掌握矩形的性质和扇形的面积公式是解决此题的关键.18、-33【解题分析】如图所示,过点A作AD⊥OD,根据∠AOB=30°,AB=BO,可得∠DAB=60°,∠OAB=30°,所以∠BAD=30°,在Rt△ADB中,sin∠BAD=BDAB,即sin30°=BDAB=12,因为AB=BO,所以BDBO=12,所以S△ADBS△ABO=1三、解答题(共66分)19、小路的宽为2m.【解题分析】如果设小路的宽度为xm,那么整个草坪的长为(2﹣2x)m,宽为(9﹣x)m,根据题意即可得出方程.【题目详解】设小路的宽度为xm,那么整个草坪的长为(2﹣2x)m,宽为(9﹣x)m.根据题意得:(2﹣2x)(9﹣x)=222解得:x2=2,x2=2.∵2>9,∴x=2不符合题意,舍去,∴x=2.答:小路的宽为2m.【题目点拨】本题考查了一元二次方程的应用,弄清“整个草坪的长和宽”是解决本题的关键.20、(1)见解析;(2)【分析】(1)连接AE,由等弦对等弧可得,进而推出,可知AE为⊙O的直径,再由等腰三角形三线合一得到AE⊥BC,根据DE∥BC即可得DE⊥AE,即可得证;(2)连接BE,AF,OF,OF与AC交于点H,AE与BC交于点G,利用勾股定理求出AG,然后求直径AE,再利用垂径定理求出HF,最后用勾股定理求AF和EF.【题目详解】证明:(1)如图,连接AE,∵AB=AC∴又∵点E是弧BC的中点,即∴,即∴AE为⊙O的直径,∵∴∠BAE=∠CAE又∵AB=AC∴AE⊥BC∵DE∥BC∴DE⊥AE∴DE是⊙O的切线.(2)如图,连接BE,AF,OF,OF与AC交于点H,AE与BC交于点G,∴∠ABE=∠AFE=90°,OF⊥AC由(1)可知AG垂直平分BC,∴BG=BC=6在Rt△ABG中,∵cos∠BAE=cos∠BAG∴,即∴AE=∴⊙O的直径为,半径为.设HF=x,则OH=∴在Rt△AHO中,即,解得∴∴【题目点拨】本题考查圆的综合问题,需要熟练掌握切线的证明方法,以及垂径定理和勾股定理的运用是关键.21、(3),;(3)①36,8;②见解析;③见解析;(3)(或)【分析】(3)先根据已知条件用含x的式子表示出长方体底面边长,再乘以长方体的高即可;

(3)①根据(3)得出的关系式求当x=3、3时对应的y的值补充表格;②③根据描点法画出函数图像即可;(3)根据图像知y=33时,x的值由两个,再估算x的值,再根据图像由y>33,得出x的取值范围即可.【题目详解】解:(3)由题意可得,无盖纸盒的底面是一个正方形,且边长为(6-3x)cm,∴,x的取值范围为:3<6-3x<6,解得.故答案为:;;(3)①当x=3时,y=4-34+36=36;当x=3时,y=4×8-34×4+36×3=8;故答案为:36,8;②③如图所示:(3)由图像可知,当y=33时,3<x<3,或3<x<3,①当3<x<3时,当x=3.4时,y=33.836,当x=3.5时,y=33.5,∴当y=33时,x≈3.5(或3.4);②当3<x<3时,当x=3.6时,y=33.544,当x=3.7时,y=33.493,∴当y=33时,x≈3.6(或3.7),∴当y>33时,x的取值范围是(或).【题目点拨】本题主要考查列函数关系式、函数图像的画法、根的估算以及函数的性质,解题的关键是掌握基本概念和性质.22、1【分析】根据正方形的性质得到AD=BC,AD∥BC,根据相似三角形的性质得到=2,于是得到答案.【题目详解】解:∵四边形ABCD是正方形,∴AD=BC,AD∥BC,∴△ADE∽△EBF,∴=,∵E是BC边的中点,∴BC=AD=2BE,∴=2,∵△DEF的面积是1,∴△DBE的面积为,∵E是BC边的中点,∴S△BCD=2S△BDE=3,∴正方形ABCD的面积=2S△BCD=2×3=1.【题目点拨】本题考查了相似三角形的判定和性质,正方形的性质,三角形的面积的计算,正确的识别图形是解题的关键.23、(1)证明见解析;(2);(3)1.【分析】(1)根据两角对应相等的两个三角形相似证明即可.

(2)解直角三角形求出BC,由△ABD∽△ACB,推出,可得AD=.

(3)点D在AC边上运动的过程中,存在某个位置,使得DF=CF.作FH⊥AC于H,BM⊥AC于M,BN⊥FH于N.则∠NHM=∠BMH=∠BNH=90°,由△BFN∽△BDM,可得=tan∠BDF=tanA=,推出AN=AM=×12=9,推出CH=CMMH=CMAN=169=7,再利用等腰三角形的性质,求出CD即可解决问题.【题目详解】(1)证明:如图1中,∵BA=BC,∴∠A=∠ACB,∵∠BDE+∠CDE=∠A+∠ABD,∠BDE=∠A,∴∠BAD=∠CDE,∴△ABD∽△CDE.(2)解:如图2中,作BM⊥AC于M.在Rt△ABM中,则AM=AB•cosA=20×=16,由勾股定理,得到AB2=AM2+BM2,∴202=162+BM2,∴BM=12,∵AB=BC,BM⊥AC,∴AC=2AM=32,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△ACB,∴∴AD==.(3)点D在AC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥AC于H,AM⊥AC于M,BN⊥FH于N.则∠NHM=∠BMH=∠BNH=90°,∴四边形BMHN为矩形,∴∠MBN=90°,MH=BN,∵AB=BC,BM⊥AC,∵AB=20,AM=CM=16,AC=32,BM=12,∵BN⊥FH,BM⊥AC,∴∠BNF=90°=∠BMD,∵∠DBF=90°=∠MBN,∴∠NBF=∠MBD,∴△BFN∽△BDM,∴=tan∠BDF=tanA=,∴BN=BM=×12=9,∴CH=CM﹣MH=CM﹣BN=16﹣9=7,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=1.故答案为:1.【题目点拨】本题属于相似形综合题,考查了新三角形的判定和性质,解直角三角形,锐角三角函数等,等腰三角形的判定和性质知识,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.24、(1)m=2;(2)P(1+,-9)或P(1-,-9)【解题分析】(1)利用待定系数法即可解决问题;(2)利用方程组首先求出点D坐标.由面积关系,推出点P的纵坐标,再利用待定系数法求出点P的坐标即可.【题目详解】解:(1)∵抛物线y=-x2+mx+3过(3,0),∴0=-9+3m+3,∴m=2(2)由,得,,∴D(,-),∵S△ABP=4S△ABD,∴AB×|yP|=4×AB×,∴|yP|=9,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论