版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省龙岩市永定区九年级数学第一学期期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.如图,有一块直角三角形余料ABC,∠BAC=90°,D是AC的中点,现从中切出一条矩形纸条DEFG,其中E,F在BC上,点G在AB上,若BF=4.5cm,CE=2cm,则纸条GD的长为()A.3cm B.cm C.cm D.cm2.如果将抛物线平移,使平移后的抛物线与抛物线重合,那么它平移的过程可以是()A.向右平移4个单位,向上平移11个单位B.向左平移4个单位,向上平移11个单位C.向左平移4个单位,向上平移5个单位D.向右平移4个单位,向下平移5个单位.3.如图,的顶点在抛物线上,将绕点顺时针旋转,得到,边与该抛物线交于点,则点的坐标为().A. B. C. D.4.⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d()A. B. C. D.5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.6.在平面直角坐标系中,对于二次函数,下列说法中错误的是()A.的最小值为1B.图象顶点坐标为(2,1),对称轴为直线C.当时,的值随值的增大而增大,当时,的值随值的增大而减小D.它的图象可以由的图象向右平移2个单位长度,再向上平移1个单位长度得到7.如图,把正三角形绕着它的中心顺时针旋转60°后,是()A. B. C. D.8.如图,正方形的边长是3,,连接、交于点,并分别与边、交于点、,连接,下列结论:①;②;③;④当时,.正确结论的个数为()A.1个 B.2个 C.3个 D.4个9.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每亩产量的两组数据,其方差分别为,,则()A.甲比乙的产量稳定 B.乙比甲的产量稳定C.甲、乙的产量一样稳定 D.无法确定哪一品种的产量更稳定10.把二次函数y=2x2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC、BD,垂足分别为C、D,连接AM,则下列结论正确的是___________.(写出所有正确结论的序号)①AM平分∠CAB;②AM2=AC•AB;③若AB=4,∠APE=30°,则的长为;④若AC=3,BD=1,则有CM=DM=.12.已知圆O的直径为4,点M到圆心O的距离为3,则点M与⊙O的位置关系是_____.13.一元二次方程配方后得,则的值是__________.14.在一个不透明的盒子里装有除颜色外其余均相同的2个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到白色乒乓球的概率为,那么盒子内白色乒乓球的个数为_____.15.如图,过圆外一点作圆的一条割线交于点,若,,且,则_______.16.已知x=﹣1是方程x2﹣2mx﹣3=0的一个根,则该方程的另一个根为_____.17.二次函数y=-2x2+3的开口方向是_________.18.如图,△ABC为⊙O的内接三角形,若∠OBA=55°,则∠ACB=_____.三、解答题(共66分)19.(10分)定义:二元一次不等式是指含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.如:x+y>3是二元一次不等式,(1,4)是该不等式的解.有序实数对可以看成直角坐标平面内点的坐标.于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.(1)已知A(,1),B(1,﹣1),C(2,﹣1),D(﹣1,﹣1)四个点,请在直角坐标系中标出这四个点,这四个点中是x﹣y﹣2≤0的解的点是.(2)设的解集在坐标系内所对应的点形成的图形为G.①求G的面积;②P(x,y)为G内(含边界)的一点,求3x+2y的取值范围;(3)设的解集围成的图形为M,直接写出抛物线y=x2+2mx+3m2﹣m﹣1与图形M有交点时m的取值范围.20.(6分)已知关于x的一元二次方程.(1)若是方程的一个解,写出、满足的关系式;(2)当时,利用根的判别式判断方程根的情况;(3)若方程有两个相等的实数根,请写出一组满足条件的、的值,并求出此时方程的根.21.(6分)如图,在平面直角坐标系中,A,B.(1)作出与△OAB关于轴对称的△;(2)将△OAB绕原点O顺时针旋转90°得到△,在图中作出△;(3)△能否由△通过平移、轴对称或旋转中的某一种图形变换直接得到?如何得到?22.(8分)近年来,“在初中数学教学候总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对使用计算器影响计算能力的发展看法人数统计表看法
没有影响
影响不大
影响很大
学生人数(人)
40
60
m
(1)求n的值;(2)统计表中的m=;(3)估计该校1800名学生中认为“影响很大”的学生人数.23.(8分)如图,已知二次函数与轴交于两点(点在点的左边),与轴交于点.(1)写出两点的坐标;(2)二次函数,顶点为.①直接写出二次函数与二次函数有关图象的两条相同的性质;②是否存在实数,使为等边三角形?如存在,请求出的值;如不存在,请说明理由;③若直线与抛物线交于两点,问线段的长度是否发生变化?如果不会,请求出的长度;如果会,请说明理由.24.(8分)如图,半圆O的直径AB=10,将半圆O绕点B顺时针旋转45°得到半圆O′,与AB交于点P,求AP的长.25.(10分)如图所示,每个小方格都是边长为1的正方形,以点为坐标原点建立平面直角坐标系四边形的顶点的坐标为,顶点的坐标为,顶点的坐标为,请在图中画出四边形关于原点.对称的四边形.26.(10分)问题提出(1)如图①,在中,,求的面积.问题探究(2)如图②,半圆的直径,是半圆的中点,点在上,且,点是上的动点,试求的最小值.问题解决(3)如图③,扇形的半径为在选点,在边上选点,在边上选点,求的长度的最小值.
参考答案一、选择题(每小题3分,共30分)1、C【题目详解】∵四边形DEFG是矩形,∴GD∥EF,GD=EF,∵D是AC的中点,∴GD是△ABC的中位线,∴,∴,解得:GD=.故选D.2、D【分析】根据平移前后的抛物线的顶点坐标确定平移方法即可得解.【题目详解】解:抛物线的顶点坐标为:(0,),∵,则顶点坐标为:(4,),∴顶点由(0,)平移到(4,),需要向右平移4个单位,再向下平移5个单位,故选择:D.【题目点拨】本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定抛物线解析式更简便.3、C【分析】先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,2),且DC∥x轴,从而求得P的纵坐标为2,代入求得的解析式即可求得P的坐标.【题目详解】∵Rt△OAB的顶点A(−2,4)在抛物线上,∴4=4a,解得a=1,∴抛物线为,∵点A(−2,4),∴B(−2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入,得,解得∴P故答案为:.【题目点拨】考查二次函数图象上点的坐标特征,坐标与图形变化-旋转,掌握旋转的性质是解题的关键.4、D【解题分析】根据点与圆的位置关系判断得出即可.【题目详解】∵点P在圆内,且⊙O的半径为4,
∴0≤d<4,
故选D.【题目点拨】本题考查了点与圆的位置关系,点与圆的位置关系有3种.设⊙O的半径为r,点P到圆心的距离OP=d,则有:①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r.5、A【分析】根据中心对称图形的定义和轴对称的定义逐一判断即可.【题目详解】A选项是中心对称图形,也是轴对称图形,故A符合题意;B选项是中心对称图形,不是轴对称图形,故B不符合题意;C选项不是中心对称图形,是轴对称图形,故C不符合题意;D选项是中心对称图形,不是轴对称图形,故D不符合题意.故选:A.【题目点拨】此题考查的是中心对称图形的识别和轴对称图形的识别,掌握中心对称图形的定义和轴对称图形的定义是解决此题的关键.6、C【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确.【题目详解】解:二次函数,,∴该函数的图象开口向上,对称轴为直线,顶点为,当时,有最小值1,当时,的值随值的增大而增大,当时,的值随值的增大而减小;故选项A、B的说法正确,C的说法错误;根据平移的规律,的图象向右平移2个单位长度得到,再向上平移1个单位长度得到;故选项D的说法正确,故选C.【题目点拨】本题考查二次函数的性质、二次函数的最值,二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质解答.7、A【分析】根据旋转的性质判断即可.【题目详解】解:∵把正三角形绕着它的中心顺时针旋转60°,∴图形A符合题意,故选:A.【题目点拨】本题考查的是图形的旋转,和学生的空间想象能力,熟练掌握旋转的性质是解题的关键.8、D【分析】由四边形ABCD是正方形,得到AD=BC=AB,∠DAB=∠ABC=90°,即可证明△DAP≌△ABQ,根据全等三角形的性质得到∠P=∠Q,根据余角的性质得到AQ⊥DP;故①正确;根据相似三角形的性质得到AO2=OD•OP,故②正确;根据△CQF≌△BPE,得到S△CQF=S△BPE,根据△DAP≌△ABQ,得到S△DAP=S△ABQ,即可得到S△AOD=S四边形OECF;故③正确;根据相似三角形的性质得到BE的长,进而求得QE的长,证明△QOE∽△POA,根据相似三角形对应边成比例即可判断④正确,即可得到结论.【题目详解】∵四边形ABCD是正方形,∴AD=BC=AB,∠DAB=∠ABC=90°.∵BP=CQ,∴AP=BQ.在△DAP与△ABQ中,∵,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP.故②正确;在△CQF与△BPE中,∵,∴△CQF≌△BPE,∴S△CQF=S△BPE.∵△DAP≌△ABQ,∴S△DAP=S△ABQ,∴S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=1.∵∠P=∠P,∠EBP=∠DAP=90°,∴△PBE∽△PAD,∴,∴BE,∴QE,∵∠Q=∠P,∠QOE=∠POA=90°,∴△QOE∽△POA,∴,∴,故④正确.故选:D.【题目点拨】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,熟练掌握全等三角形的判定和性质是解答本题的关键.9、B【分析】由,,可得到<,根据方差的意义得到乙的波动小,比较稳定.【题目详解】∵,,
∴<,
∴乙比甲的产量稳定.
故选:B.【题目点拨】本题考查了方差的意义:方差反映一组数据在其平均数左右的波动大小,方差越大,波动就越大,越不稳定,方差越小,波动越小,越稳定.10、A【解题分析】将二次函数的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:.故选A.二、填空题(每小题3分,共24分)11、①②④【解题分析】连接OM,由切线的性质可得OM⊥PC,继而得OM∥AC,再根据平行线的性质以及等边对等角即可求得∠CAM=∠OAM,由此可判断①;通过证明△ACM∽△AMB,根据相似三角形的对应边成比例可判断②;求出∠MOP=60°,利用弧长公式求得的长可判断③;由BD⊥PC,AC⊥PC,OM⊥PC,可得BD∥AC//OM,继而可得PB=OB=AO,PD=DM=CM,进而有OM=2BD=2,在Rt△PBD中,PB=BO=OM=2,利用勾股定理求出PD的长,可得CM=DM=DP=,由此可判断④.【题目详解】连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB,故①正确;∵AB为⊙O的直径,∴∠AMB=90°,∵∠CAM=∠MAB,∠ACM=∠AMB,∴△ACM∽△AMB,∴,∴AM2=AC•AB,故②正确;∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为,故③错误;∵BD⊥PC,AC⊥PC,OM⊥PC,∴BD∥AC//OM,∴△PBD∽△PAC,∴,∴PB=PA,又∵AO=BO,AO+BO=AB,AB+PB=PA,∴PB=OB=AO,又∵BD∥AC//OM,∴PD=DM=CM,∴OM=2BD=2,在Rt△PBD中,PB=BO=OM=2∴PD==,∴CM=DM=DP=,故④正确,故答案为①②④.【题目点拨】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,综合性较强,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.12、在圆外【分析】根据由⊙O的直径为4,得到其半径为2,而点M到圆心O的距离为3,得到点M到圆心O的距离大于圆的半径,根据点与圆的位置关系即可判断点M与⊙O的位置关系.【题目详解】解:∵⊙O的直径为4,∴⊙O的半径为2,∵点M到圆心O的距离为3,∴∴点M与⊙O的位置关系是在圆外.故答案为:在圆外.【题目点拨】本题考查的是点与圆的位置关系,解决此类问题可通过比较点到圆心的距离d与圆半径大小关系完成判定.13、1【分析】将原方程进行配方,然后求解即可.【题目详解】解:∴-m+1=nm+n=1故答案为:1【题目点拨】本题考查配方法,掌握配方步骤正确计算是本题的解题关键.14、1.【分析】设盒子内白色乒乓球的个数为x,根据摸到白色乒乓球的概率为列出关于x的方程,解之可得.【题目详解】解:设盒子内白色乒乓球的个数为,根据题意,得:,解得:,经检验:是原分式方程的解,∴盒子内白色乒乓球的个数为1,故答案为1.【题目点拨】此题主要考查了概率公式,关键是掌握随机事件A的概率事件A可能出现的结果数:所有可能出现的结果数.15、1【分析】作OD⊥AB于D,由垂径定理得出AD=BD,由三角函数定义得出sin∠OAB=,设OD=4x,则OC=OA=5x,OP=3+5x,由勾股定理的AD=3x,由含30角的直角三角形的性质得出OP=2OD,得出方程3+5x=2×4x,解得x=1,得出BD=AD=3即可.【题目详解】作OD⊥AB于D,如图所示:则AD=BD,∵sin∠OAB=,∴设OD=4x,则OC=OA=5x,OP=3+5x,AD==3x,∵∠OPA=30,∴OP=2OD,∴3+5x=2×4x,解得:x=1,∴BD=AD=3,∴AB=1;故答案为:1.【题目点拨】本题看了垂径定理、勾股定理、三角函数定义等知识;熟练掌握垂径定理和勾股定理是解题的关键.16、1【分析】根据根与系数的关系即可求出答案.【题目详解】解:设另外一个根为x,由根与系数的关系可知:﹣x=﹣1,∴x=1,故答案为:1.【题目点拨】本题考查了一元二次方程根与系数的关系,熟知根与系数的关系是解题的关键.17、向下.【解题分析】试题分析:根据二次项系数的符号,直接判断抛物线开口方向.试题解析:因为a=-2<0,所以抛物线开口向下.考点:二次函数的性质.18、35°【分析】先利用等腰三角形的性质得∠OAB=∠OBA=55°,再根据三角形内角和定理,计算出∠AOB=70°,然后根据圆周角定理求解.【题目详解】∵OA=OB,∴∠OAB=∠OBA=55°,∴∠AOB=180°﹣55°×2=70°,∴∠ACB=∠AOB=35°.故答案为:35°.【题目点拨】本题主要考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半,是解题的关键.三、解答题(共66分)19、(2):A、B、D;(2)①2;②﹣22≤2x+2y≤2;(2)0≤m≤.【分析】(2)在直角坐标系描出A、B、C、D四点,观察图形即可得出结论(2)①分别画出直线y=2x+2、y=-x-2、y=-2得出图形为G,从而求出G的面积;②根据P(x,y)为G内(含边界)的一点,求出x、y的范围,从而2x+2y的取值范围;(2)分别画出直线y=2x+2、y=2x-2、y=-2x-2、y=-2x+2所围成的图形M,再根据抛物线的对称轴x=﹣m,和抛物线y=x2+2mx+2m2﹣m﹣2与图形M有交点,从而求出m的取值范围【题目详解】解:(2)如图所示:这四个点中是x﹣y﹣2≤0的解的点是A、B、D.故答案为:A、B、D;(2)①如图所示:不等式组在坐标系内形成的图形为G,所以G的面积为:×2×2=2.②根据图象得:﹣2≤x≤2,﹣2≤y≤﹣2,∴﹣6≤2x≤2,﹣6≤2y≤﹣2,∴﹣22≤2x+2y≤2.答:2x+2y的取值范围为﹣22≤2x+2y≤2.(2)如图所示为不等式组的解集围成的图形,设为M,抛物线y=x2+2mx+2m2﹣m﹣2与图形M有交点时m的取值范围:∵抛物线的对称轴x=﹣m,﹣m≥﹣,或﹣m≤,∴m或m≥﹣.又﹣2≤2m2﹣m﹣2≤2,∴0≤m≤,综上:m的取值范围是0≤m≤【题目点拨】本题考查了二次函数的综合题,涉及到了一次函数与方程、一次函数与不等式、二次函数与不等式等知识,熟练掌握相关知识是解题的关键20、(1);(2)原方程有两个不相等的实数根;(3),,(答案不唯一).【分析】(1)把方程的解代入即可;(2)根据根的判别式及b=a+1计算即可;(3)根据方程根的情况得到根的判别式,从而得到a、b的值,再代入方程解方程即可.【题目详解】解:(1)把代入方程可得,故a、b满足的关系式为;(2)△,∵,∴△,∴原方程有两个不相等的实数根;(3)∵方程有两个相等的实数根,∴△=,即,取,(取值不唯一),则方程为,解得.【题目点拨】本题考查一元二次方程的解,解法,及根的判别式,熟记根的判别式,掌握一元二次方程的解法是解题的关键.21、(1)见解析;(2)见解析;(3)△可由△沿直线翻折得到【分析】(1)先作出A1和B1点,然后用线段连接A1、B1和O点即可;(2)先作出A2和B2点,然后用线段连接A2、B2和O点即可;(3)根据(1)和(2)中B1和B2点坐标,得到OB为B1B2的垂直平分线,因此可以判断两个图形关于直线对称.【题目详解】(1)根据题意获得下图;(2)根据题意获得上图;(3)根据题意得,直线OB的解析式为,通过观察图像可以得到B1(-4,4)和B2(4,-4),∴直线B1B2的解析式为,∴直线OB为直线B1B2的垂直平分线,∴两个图形关于直线对称,即△可由△沿直线翻折得到故答案为(1)见解析;(2)见解析;(3)△可由△沿直线翻折得到.【题目点拨】本题考查了旋转的坐标变换,做旋转图形,轴对称图形的判断,是图形变化中的重点题型,关键是先作出对应点,然后进行连线.22、(1)200;(2)1;(3)900.【解题分析】试题分析:(1)将“没有影响”的人数÷其占总人数百分比=总人数n即可;(2)用总人数减去“没有影响”和“影响不大”的人数可得“影响很低”的人数m;(3)将样本中“影响很大”的人数所占比例乘以该校总人数即可得.试题解析:(1)n=40÷20%=200(人).答:n的值为200;(2)m=200-40-60=1;(3)1800×=900(人).答:该校1800名学生中认为“影响很大”的学生人数约为900人.故答案为(2)1.考点:1.扇形统计图;2.用样本估计总体.23、(1);(2)①对称轴都为直线或顶点的横坐标为2;都经过两点;②存在实数,使为等边三角形,;③线段的长度不会发生变化,值为1.【分析】(1)令,求出解集即可;(2)①根据二次函数与有关图象的两条相同的性质求解即可;②根据,可得到结果;③根据已知条件列式,求出定值即可证明.【题目详解】解:(1)令,∴,∴,,∵点在点的左边,∴;(2)①二次函数与有关图象的两条相同的性质:(I)对称轴都为直线或顶点的横坐标为2;(II)都经过两点;②存在实数,使为等边三角形.∵,∴顶点,∵,∴,要使为等边三角形,必满足,∴;③线段的长度不会发生变化.∵直线与抛物线交于两点,∴,∵,∴,∴,,∴,∴线段的长度不会发生变化.【题目点拨】本题主要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度金融机构公对公汇款业务合作协议3篇
- 2025年度房地产公司挂靠合作经营管理协议3篇
- 2025年度环保技术兼职合同3篇
- 2025年度新型商业空间使用权转让合同3篇
- 二零二五年度竞业协议期限及竞业限制解除赔偿2篇
- 二零二五年度国有企业劳动用工合同范本3篇
- 2025年度新材料研发与应用合伙人股权合作协议书3篇
- 2025年度留学生实习实训项目资金资助协议3篇
- 二零二五年度大米产业链品牌建设与市场营销服务合同3篇
- 二零二五年度店面转让定金支付及独家代理协议3篇
- NY 5052-2001无公害食品海水养殖用水水质
- 【讲座】2020年福建省高职分类考试招生指导讲座
- 性格决定命运课件
- 球磨机安全检查表分析(SCL)+评价记录
- 学习会计基础工作规范课件
- 双面埋弧焊螺旋钢管公称外公壁厚和每米理论重量
- 富士施乐VC2265打印机使用说明SPO
- 服务态度决定客户满意度试题含答案
- 中学历史教育中的德育状况调查问卷
- 教科版四年级科学上册全册复习教学设计及知识点整理
- 重庆万科渠道制度管理办法2022
评论
0/150
提交评论