版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
某某省随州市曾都区2016届九年级数学上学期期末考试试题一、选择题(共10小题,每小题3分,满分30分)1.一元二次方程2x2﹣x=1的一次项系数和常数项依次是()A.﹣1和1 B.﹣1和﹣1 C.2和﹣1 D.﹣1和32.若反比例函数的图象位于第二、四象限,则k的取值可以是()A.0 B.1 C.2 D.以上都不是3.自连续正整数10~99中选出一个数,其中每个数被选出的机会相等.求选出的数,其十位数字与个位数字的和为9的概率为()A. B. C. D.4.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A. B. C. D.5.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣ B.或 C.2或 D.2或或6.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D7.如图,白云湖水库堤坝横断面迎水坡AB的斜面坡度是1:,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.2400m C.400m D.1200m8.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE9.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3 B.4 C.5 D.610.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A. B. C. D.二、填空题(共6小题,每小题3分,满分18分)11.写出一个有最大值的二次函数,且它的图象过(1,3)点,这个二次函数的解析式为__________.12.如图,为了测量某建筑物AB的高度,在地面上的C处测得建筑物顶端A的仰角为30°,沿CB方向前进30m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于__________m.13.已知双曲线y=经过点(﹣1,3),如果A(x1,y1)B(x2,y2)两点在该双曲线上,且x1<x2<0,那么y1__________y2.14.圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为__________.15.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为__________度.16.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE所叠得△DFE,延长EF交边AB于点G,连接DG,BF,给出以下结论:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=.其中所有正确结论的序号是__________.三、解答题(共9小题,满分72分)17.已知关于x的方程x2+2(a﹣1)x+a2﹣7a﹣4=0的两根为x1、x2,且满足x1•x2﹣3x1﹣3x2﹣2=0.求a的值.18.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.19.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.20.已知AB是⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图①,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图②,若∠CPA不等于30°时,①中的结论是否仍然成立?请说明理由.21.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.22.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)23.如图,在△ABC中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.(1)求BD•cos∠HBD的值;(2)若∠CBD=∠A,求AB的长.24.如图,在△ABC中,∠C=45°,BC=12,高AD=10,矩形EFPQ的一边QP边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设BF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;(3)当矩形EFPQ的面积最大时,该矩形以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.25.已知两条直线l1、l2分别经过点A(﹣1,0)、点B(3,0)并且当两条直线同时相交于y轴的负半轴上的点C时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与直线l1交于点K,与直线l2交于点E,在x轴交于点F,D是抛物线的顶点,如图所示.(1)求点C的坐标,并求出抛物线的函数解析式;(2)抛物线的对称轴被直线l1、抛物线、直线l2和x轴依次截得三条线段,问:这三条线段有何数量关系?请说明理由.(3)当直线l2绕点C旋转时,与抛物线的另一个交点为M,请找出使△MCK为等腰三角形的点M,简述理由,并写出点M的坐标.2015-2016学年某某省随州市曾都区九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.一元二次方程2x2﹣x=1的一次项系数和常数项依次是()A.﹣1和1 B.﹣1和﹣1 C.2和﹣1 D.﹣1和3【考点】一元二次方程的一般形式.【分析】首先把1从等号右边移到等号左边,再确定一次项系数和常数项.【解答】解:2x2﹣x=1,移项得:2x2﹣x﹣1=0,一次项系数是﹣1,常数项是﹣1.故选:B.【点评】此题主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.若反比例函数的图象位于第二、四象限,则k的取值可以是()A.0 B.1 C.2 D.以上都不是【考点】反比例函数的性质.【专题】计算题.【分析】反比例函数的图象位于第二、四象限,比例系数k﹣1<0,即k<1,根据k的取值X围进行选择.【解答】解:∵反比例函数的图象位于第二、四象限,∴k﹣1<0,即k<1.故选:A.【点评】本题考查了反比例函数的性质.对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.3.自连续正整数10~99中选出一个数,其中每个数被选出的机会相等.求选出的数,其十位数字与个位数字的和为9的概率为()A. B. C. D.【考点】概率公式.【分析】列举出所有情况,看十位数字与个位数字的和为9的情况占所有情况的多少即为所求的概率.【解答】解:∵在连续正整数10~99中共有90个数,其中十位数字与个位数字的和为9的有:18、27、36、45、54、63、72、81、90共9位数,∴十位数字与个位数字的和为9的概率为:=.故选B.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A. B. C. D.【考点】几何体的展开图.【专题】压轴题.【分析】由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面.【解答】解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选:B.【点评】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.5.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()A.﹣ B.或 C.2或 D.2或或【考点】二次函数的最值.【专题】压轴题;分类讨论.【分析】根据对称轴的位置,分三种情况讨论求解即可.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.【点评】本题考查了二次函数的最值问题,难点在于分情况讨论.6.在如图4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是()A.点A B.点B C.点C D.点D【考点】旋转的性质.【分析】连接PP1、NN1、MM1,分别作PP1、NN1、MM1的垂直平分线,看看三线都过哪个点,那个点就是旋转中心.【解答】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选B.【点评】本题考查了学生的理解能力和观察图形的能力,注意:旋转时,对应顶点到旋转中心的距离应相等且旋转角也相等,对称中心在连接对应点线段的垂直平分线上.7.如图,白云湖水库堤坝横断面迎水坡AB的斜面坡度是1:,堤坝高BC=50m,则迎水坡面AB的长度是()A.100m B.2400m C.400m D.1200m【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意可得=,把BC=50m,代入即可算出AC的长,再利用勾股定理算出AB的长即可.【解答】解:∵堤坝横断面迎水坡AB的坡比是1:,∴=,∵BC=50m,∴AC=50m,∴AB==100m,故选:A.【点评】本题主要考查了解直角三角形的应用﹣坡度问题、勾股定理;关键是掌握坡度是坡面的铅直高度h和水平宽度l的比.8.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是的中点,则下列结论不成立的是()A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE【考点】切线的性质;圆心角、弧、弦的关系;圆周角定理.【专题】计算题.【分析】由C为弧EB的中点,利用垂径定理的逆定理得出OC垂直于BE,由AB为圆的直径,利用直径所对的圆周角为直角得到AE垂直于BE,即可确定出OC与AE平行,选项A正确;由C为弧BE中点,即弧BC=弧CE,利用等弧对等弦,得到BC=EC,选项B正确;由AD为圆的切线,得到AD垂直于OA,进而确定出一对角互余,再由直角三角形ABE中两锐角互余,利用同角的余角相等得到∠DAE=∠ABE,选项C正确;AC不一定垂直于OE,选项D错误.【解答】解:A、∵点C是的中点,∴OC⊥BE,∵AB为圆O的直径,∴AE⊥BE,∴OC∥AE,本选项正确;B、∵=,∴BC=CE,本选项正确;C、∵AD为圆O的切线,∴AD⊥OA,∴∠DAE+∠EAB=90°,∵∠EBA+∠EAB=90°,∴∠DAE=∠EBA,本选项正确;D、AC不一定垂直于OE,本选项错误,故选D【点评】此题考查了切线的性质,圆周角定理,以及圆心角,弧及弦之间的关系,熟练掌握切线的性质是解本题的关键.9.如图,菱形ABCD中,点M,N在AC上,ME⊥AD,NF⊥AB.若NF=NM=2,ME=3,则AN=()A.3 B.4 C.5 D.6【考点】菱形的性质;相似三角形的判定与性质.【分析】根据菱形的对角线平分一组对角可得∠1=∠2,然后求出△AFN和△AEM相似,再利用相似三角形对应边成比例列出求解即可.【解答】解:在菱形ABCD中,∠1=∠2,又∵ME⊥AD,NF⊥AB,∴∠AEM=∠AFN=90°,∴△AFN∽△AEM,∴=,即=,解得AN=4.故选B.【点评】本题考查了菱形的对角线平分一组对角的性质,相似三角形的判定与性质,关键在于得到△AFN和△AEM相似.10.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是()A. B. C. D.【考点】动点问题的函数图象.【专题】压轴题.【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,再判断出函数图象.【解答】解:设BE=x,FC=y,则AE2=x2+42,EF2=(4﹣x)2+y2,AF2=(4﹣y)2+42.又∵△AEF为直角三角形,∴AE2+EF2=AF2.即x2+42+(4﹣x)2+y2=(4﹣y)2+42,化简得:,再化为,很明显,函数对应A选项.故选:A.【点评】此题为动点函数问题,关键列出动点的函数关系,再判断选项.二、填空题(共6小题,每小题3分,满分18分)11.写出一个有最大值的二次函数,且它的图象过(1,3)点,这个二次函数的解析式为y=﹣(x﹣1)2+3.【考点】二次函数的性质.【专题】开放型.【分析】因为二次函数有最大值,所以开口向下,即a<0;因为函数图象过(1,3)点,根据顶点式写出解析式即可.【解答】解:∵二次函数有最大值,∴取a=﹣1,∵它的图象过(1,3)点,∴设顶点为(1,3),∴二次函数的解析式为y=﹣(x﹣1)2+3.故答案为y=﹣(x﹣1)2+3.【点评】本题考查了二次函数的性质,是开放性试题,考查函数图形及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义,但此题若想答对需要满足所有条件,如果学生没有注意某一个条件就容易错.本题的结论是不唯一的,其解答思路渗透了数形结合的数学思想.12.如图,为了测量某建筑物AB的高度,在地面上的C处测得建筑物顶端A的仰角为30°,沿CB方向前进30m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于15()m.【考点】解直角三角形的应用-仰角俯角问题.【专题】推理填空题.【分析】根据题意可以得到,∠ACB=30°,∠ADB=45°,然后根据图形可以得到AB与CB、BD之间的关系,从而可以求得AB的长度.【解答】解:由题意可得,∠ACB=30°,∠ADB=45°,∵tan30°=,tan45°=,CB=CD+DB,CD=30m,∴,解得AB=BD=15().故答案为:15().【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是利用数形结合的思想找出各边之间的关系,然后找出所求问题需要的条件.13.已知双曲线y=经过点(﹣1,3),如果A(x1,y1)B(x2,y2)两点在该双曲线上,且x1<x2<0,那么y1<y2.【考点】反比例函数图象上点的坐标特征.【分析】根据题意画出函数图象,再根据其反比例函数增减性解答即可.【解答】解:∵双曲线y=经过点(﹣1,3),∴k=﹣3,∴函数图象如下图,在每个象限内,y随x的增大而增大,∵A(x1,y1)B(x2,y2)两点在该双曲线上,且x1<x2<0,∴A,B两点在第二象限的曲线上,∴y1<y2.【点评】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.14.圆锥的底面半径是1,侧面积是2π,则这个圆锥的侧面展开图的圆心角为180°.【考点】圆锥的计算.【分析】根据圆锥的侧面积公式S=πrl得出圆锥的母线长,再结合扇形面积公式即可求出圆心角的度数.【解答】解:∵侧面积为2π,∴圆锥侧面积公式为:S=πrl=π×1×l=2π,解得:l=2,∴扇形面积为2π=,解得:n=180,∴侧面展开图的圆心角是180度.故答案为:180°.【点评】此题主要考查了圆锥的侧面积公式应用以及与展开图扇形面积关系,求出圆锥的母线长是解决问题的关键.15.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为15度.【考点】旋转的性质.【专题】计算题;压轴题.【分析】根据旋转的性质△ABC≌△EDB,BC=BD,求出∠CBD的度数,再求∠BDC的度数.【解答】解:根据旋转的性质△ABC≌△EDB,BC=BD,则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°﹣∠DBE=180°﹣30°=150°,∠BDC=(180°﹣∠CBD)=15°.故答案为15°.【点评】根据旋转的性质,确定各角之间的关系,利用已知条件把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转求出即可.16.如图,正方形ABCD中,AB=12,点E在边BC上,BE=EC,将△DCE沿DE所叠得△DFE,延长EF交边AB于点G,连接DG,BF,给出以下结论:①△DAG≌△DFG;②BG=2AG;③△EBF∽△DEG;④S△BEF=.其中所有正确结论的序号是①②④.【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】根据正方形的性质和折叠的性质可得AD=DF,∠A=∠GFD=90°,于是根据“HL”判定Rt△ADG≌Rt△FDG,再由GF+GB=GA+GB=12,EB=EF,△BGE为直角三角形,可通过勾股定理列方程求出AG=4,BG=8,进而求出△BEF的面积,再抓住△BEF是等腰三角形,而△GED显然不是等腰三角形,判断③是错误的,问题得解.【解答】解:由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,在Rt△ADG和Rt△FDG中,,∴Rt△ADG≌Rt△FDG,故①正确;∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12﹣x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12﹣x)2,解得:x=4∴AG=GF=4,BG=8,BG=2AG,故②正确;BE=EF=6,△BEF是等腰三角形,易知△GED不是等腰三角形,故③错误;S△GBE=×6×8=24,S△BEF=•S△GBE==,故④正确.综上可知正确的结论的是3个,故答案为:①②④.【点评】本题考查了相似三角形的判定和性质、图形的翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.三、解答题(共9小题,满分72分)17.已知关于x的方程x2+2(a﹣1)x+a2﹣7a﹣4=0的两根为x1、x2,且满足x1•x2﹣3x1﹣3x2﹣2=0.求a的值.【考点】根与系数的关系;根的判别式.【分析】先根据根与系数的关系得到x1+x2=﹣2(a﹣1),x1•x2=a2﹣7a﹣4,再把它们代入已知条件后整理得到关于a的方程,求得方程的解,然后分别把a的值代入原方程,根据判别式的意义确定a的值.【解答】解:根据题意得x1+x2=﹣2(a﹣1),x1•x2=a2﹣7a﹣4,∵x1x2﹣3x1﹣3x2﹣2=0,即x1x2﹣3(x1+x2)﹣2=0,∴a2﹣7a﹣4+6(a﹣1)﹣2=0,整理得a2﹣a﹣12=0,解得a1=4,a2=﹣3,∵△=4(a﹣1)2﹣4(a2﹣7a﹣4)=20a+20≥0,∴a≥﹣1,∴a=﹣3舍去,因此a=4.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.18.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.已知一次函数y1=x+m的图象与反比例函数y2=的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】(1)首先根据x>1时,y1>y2,0<x<1时,y1<y2确定点A的横坐标,然后代入反比例函数解析式求出点A的纵坐标,从而得到点A的坐标,再利用待定系数法求直线解析式解答;(2)根据点C到y轴的距离判断出点C的横坐标,代入反比例函数解析式求出纵坐标,从而得到点C的坐标,过点C作CD∥x轴交直线AB于D,求出点D的坐标,然后得到CD的长度,再联立一次函数与双曲线解析式求出点B的坐标,然后△ABC的面积=△ACD的面积+△BCD的面积,列式进行计算即可得解.【解答】解:(1)∵当x>1时,y1>y2;当0<x<1时,y1<y2,∴点A的横坐标为1,代入反比例函数解析式,=y,解得y=6,∴点A的坐标为(1,6),又∵点A在一次函数图象上,∴1+m=6,解得m=5,∴一次函数的解析式为y1=x+5;(2)∵第一象限内点C到y轴的距离为3,∴点C的横坐标为3,∴y==2,∴点C的坐标为(3,2),过点C作CD∥x轴交直线AB于D,则点D的纵坐标为2,∴x+5=2,解得x=﹣3,∴点D的坐标为(﹣3,2),∴CD=3﹣(﹣3)=3+3=6,点A到CD的距离为6﹣2=4,联立,解得(舍去),,∴点B的坐标为(﹣6,﹣1),∴点B到CD的距离为2﹣(﹣1)=2+1=3,S△ABC=S△ACD+S△BCD=×6×4+×6×3=12+9=21.【点评】本题考查了反比例函数图象与一次函数图象的交点问题,根据已知条件先判断出点A的横坐标是解题的关键.20.已知AB是⊙O的直径,P为AB延长线上的任意一点,过点P作⊙O的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图①,若∠CPA恰好等于30°,求∠CDP的度数;(2)如图②,若∠CPA不等于30°时,①中的结论是否仍然成立?请说明理由.【考点】切线的性质.【分析】(1)利用切线的性质得出∠OCP=90°,进而利用∠CPA=30°,得出∠COP的度数,进而结合角平分线的性质得出∠APD,再利用∠CDP=∠A+∠APD求出答案;(2)利用切线的性质得出∠OCP=90°,结合角平分线的性质得出∠APC=2∠APD,结合∠COP=2∠A,得出2(∠A+∠APD)=90°,进而求出答案.【解答】解:(1)如图①,连接OC,∵直线PC是⊙O的切线,∴OC⊥PC,则∠OCP=90°,∵∠CPA=30°,∴∠COP=90°﹣30°=60°,∵OA=OC,∴∠A=∠ACO=30°,∵PD平分∠APC,∴∠APD=×30°=15°,∴∠CDP=∠A+∠APD=30°+15°=45°,即∠CDP的度数为:45°;(2)∠CDP的大小不发生变化,理由:如图②,连接CO,∵PC是⊙O的切线,∴∠OCP=90°,∵PD是∠CPA的平分线,∴∠APC=2∠APD,∵OA=OC,∴∠A=∠ACO,∴∠COP=2∠A,∴∠COP+∠APC=90°,即2(∠A+∠APD)=90°,∴∠CDP=∠A+∠APD=45°,故∠CDP的大小不发生变化.【点评】此题主要考查了切线的性质以及角平分线的性质,正确得出2(∠A+∠APD)=90°是解题关键.21.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.【考点】旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.【专题】几何图形问题.【分析】(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.【点评】此题主要考查了菱形的判定以及旋转的性质和直角三角形斜边上的中线等于斜边的一半等知识,得出△DFC是等边三角形是解题关键.22.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)【考点】解直角三角形的应用-方向角问题.【分析】(1)首先由已知求出∠PBQ和∠BPQ的度数进行比较得出线段BQ与PQ是否相等;(2)先由已知求出∠PQA,再由直角三角形PQA求出AQ,由(1)得出BQ=PQ=1200,又由已知得∠AQB=90°,所以根据勾股定理求出A,B间的距离.【解答】解:(1)线段BQ与PQ相等.证明:∵∠PQB=90°﹣41°=49°,∠BPQ=90°﹣24.5°=65.5°,∴∠PBQ=180°﹣49°﹣65.5°=65.5°,∴∠BPQ=∠PBQ,∴BQ=PQ;(2)∠AQB=180°﹣49°﹣41°=90°,∠PQA=90°﹣49°=41°,∴AQ===1600,BQ=PQ=1200,∴AB2=AQ2+BQ2=16002+12002,∴AB=2000,答:A、B的距离为2000m.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是通过角的计算得出BQ=PQ,再由直角三角形先求出AQ,根据勾股定理求出AB.23.如图,在△ABC中,∠ABC=90°,BC=3,D为AC延长线上一点,AC=3CD,过点D作DH∥AB,交BC的延长线于点H.(1)求BD•cos∠HBD的值;(2)若∠CBD=∠A,求AB的长.【考点】相似三角形的判定与性质;解直角三角形.【分析】(1)首先根据DH∥AB,判断出△ABC∽△DHC,即可判断出=3;然后求出BH的值是多少,再根据在Rt△BHD中,cos∠HBD=,求出BD•cos∠HBD的值是多少即可.(2)首先判断出△ABC∽△BHD,推得;然后根据△ABC∽△DHC,推得,所以AB=3DH;最后根据,求出DH的值是多少,进而求出AB的值是多少即可.【解答】解:(1)∵DH∥AB,∴∠BHD=∠ABC=90°,∴△ABC∽△DHC,∴=3,∴CH=1,BH=BC+CH,在Rt△BHD中,cos∠HBD=,∴BD•cos∠HBD=BH=4.(2)∵∠CBD=∠A,∠ABC=∠BHD,∴△ABC∽△BHD,∴,∵△ABC∽△DHC,∴,∴AB=3DH,∴,解得DH=2,∴AB=3DH=3×2=6,即AB的长是6.【点评】(1)此题主要考查了相似三角形的性质和应用,要熟练掌握,解答此题的关键是要明确:寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有时可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.(2)此题还考查了直角三角形的性质和应用,要熟练掌握.24.如图,在△ABC中,∠C=45°,BC=12,高AD=10,矩形EFPQ的一边QP边上,E、F两点分别在AB、AC上,AD交EF于点H.(1)求证:;(2)设BF=x,当x为何值时,矩形EFPQ的面积最大?并求其最大值;(3)当矩形EFPQ的面积最大时,该矩形以每秒1个单位的速度沿射线QC匀速运动(当点Q与点C重合时停止运动),设运动时间为t秒,矩形EFPQ与△ABC重叠部分的面积为S,求S与t的函数关系式.【考点】相似形综合题.【分析】(1)根据矩形的性质得出EF∥QP,再由AD⊥BC可得出AH⊥EF,进而可得出结论;(2)先用x表示出AH的长,再由S矩形EFPQ=EF•EQ可得出二次函数的解析式,进而可得出结论;(3)先求出PC及QC的长,再分0≤t≤5,5≤t<6及6≤t≤11三种情况进行讨论即可.【解答】(1)证明:∵四边形EFPQ是矩形,∴EF∥QP.∵AD⊥BC,∴AH⊥EF,∴=;(2)解:∵由(1)得,=,∴AH=x,∴EQ=HD=AD﹣AH=10﹣x,∴S矩形EFPQ=EF•EQ=x(10﹣x)=﹣x2+10x=﹣(x﹣6)2+30,∵﹣<0,∴当x=6时,S矩形EFPQ有最大值,最大值为30.(3)解:如图1,由(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 12 慧眼看交通 第1课时 说课稿-2023-2024学年道德与法治三年级下册统编版
- 2024年版国际制药行业技术转移合同
- 2024样板间房地产买卖合同模板3篇
- 专业辣椒经销商2024年度购货协议版B版
- 2024水利工程环境监理规范执行操作指导合同范本3篇
- 福建省南平市塔前中学高二地理联考试卷含解析
- 专业项目委托服务协议(2024版)版A版
- 2024年股权转让后续持证合同标准模板版B版
- 商务礼仪与财务策略
- 清明营销情感链接
- 儿科课件过敏性紫癜
- 直肠癌临床路径
- 绿化养护工作计划表
- 汉字拼写游戏
- GB/T 12310-2012感官分析方法成对比较检验
- FZ/T 70010-2006针织物平方米干燥重量的测定
- 银行贷款批复样本
- 正数负数练习题
- QC成果提高内隔墙ALC板材安装质量
- 韩国文化-课件
- 出院健康宣教课件
评论
0/150
提交评论